CS/ENGRD 2110 Object-Oriented Programming and Data Structures Fall 2012

Lecture 25: Review and Open Problems

Course Overview

- Programming Concepts
 - Object-Oriented Programming
 - Interfaces and Types
 - Recursion
 - Graphical User Interfaces (GUIs)
 - Concurrency and Threads
 - → we use Java, but the goal is to understand the ideas rather than to become a Java expert

- Data-Structure Concepts
 - Arrays, Trees, and Lists
 - Searching & Sorting
 - Stacks & Queues
 - Priority Queues
 - Sets & Dictionaries
 - Graphs
 - Induction
 - Asymptotic analysis (big-O)
 - → develop skill with a set of tools that are widely useful

Operational Knowledge

Programming Concepts

- Object-Oriented Programming
 - Classes and objects
 - Primitive vs. reference types
 - Dynamic vs. static types
 - Subtypes and Inheritance
 - Overriding
 - Shadowing
 - Overloading
 - Upcasting & downcasting
 - Inner & anonymous classes
- Recursion
 - Divide and conquer
 - Stack frames
 - Exceptions

- Interfaces and Types
 - Type hierarchy vs. class hierarchy
 - Generic types
 - The Comparable interface
 - Design patterns: Iterator,
 Observer (GUI), etc.
- GUIs
 - Components, Containers,
 Layout Managers
 - Events & listeners
- Concurrency and Threads
 - Locking
 - Race conditions
 - Deadlocks

Data Structure Concepts

- Basic building blocks
 - Arrays
 - Lists (Singly- and doubly-linked)
 - Trees
- Asymptotic analysis (big-O)
 - Induction
 - Solving recurrences
 - Lower bound on sorting
- Grammars & parsing
- Searching
 - Linear- vs. binary-search
- Sorting
 - Insertion-, Selection-, Merge-,
 Quick-, and Heapsort

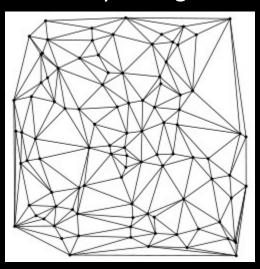
- Useful ADTs (& implementations)
 - Stacks & Queues
 - Arrays & lists
 - Priority Queues
 - Heaps
 - Array of queues
 - Sets & Dictionaries
 - Arrays & lists
 - Hashing & Hashtables
 - Binary Search Trees (BSTs)
 - Graphs...

Data Structure Concepts

— Graphs

- Mathematical definition of a graph (directed, undirected)
- Representations
 - Adjacency matrix
 - Adjacency list
- Topological sort
- Coloring
- Searching (BFS & DFS)
- Shortest paths
- Minimum Spanning Trees (MSTs)
 - Prim's algorithm
 - Kruskal's algorithm

What else is there in CS?

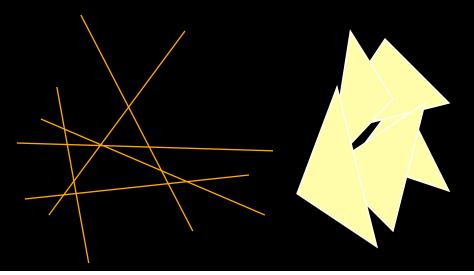

- CS2110 + Math is sufficient prerequisite for many 4000-level Computer Science classes!
- Areas of Computer Science:
 - Artificial Intelligence
 - Network Science
 - Software Engineering
 - Computer Graphics
 - Natural Language Processing
 - Programming Languages
 - Security and Trustworthy Systems
 - Databases
 - Operating Systems
 - Theory of Computing

Some Unsolved Problems

Complexity of Bounded-Degree Euclidean MST

- The Euclidean MST (Minimum Spanning Tree) problem:
 - Given n points in the plane, edge weights are distances
 - determine the MST
 - Can be solved in O(n log n) time by first building the Delaunay Triangulation

- Bounded-degree version:
 - Given n points in the plane, determine a MST where each vertex has degree ≤ d
 - Known to be NP-hard for d=3 [Papadimitriou & Vazirani 84]
 - O(n log n) algorithm for d=5 or greater
 - Can show Euclidean MST has degree ≤ 5
 - Unknown for d=4


Complexity of Euclidean MST in Rd

- Given n points in
 dimension d, determine
 the MST
 - Is there an algorithm with runtime close to the O(n log n)?
 - Can solve in timeO(n log n) for d=2

- For large d, it appears that runtime approaches O(n²)
 - Best algorithms for general graphs run in time linear in m = number of edges
 - But for Euclidean
 distances on points, the
 number of edges is
 m = n(n-1)/2

3SUM in Subquadratic Time?

- Given a set of n integers, are there three that sum to zero?
 - O(n²) algorithms are easy (e.g., use a hashtable)
 - Are there better algorithms?

- This problem is closely related to many other "3SUM-Hard" problems [Gajentaan & Overmars 95]
 - Given n lines in the plane, are there 3 lines that intersect in a point?
 - Given n triangles in the plane, does their union have a hole?

The Big Question: Is P=NP?

- P is the class of problems that can be solved in polynomial time
 - These problems are considered tractable
 - Problems that are not in P are considered intractable
- NP represents problems that, for a given solution, the solution can be checked in polynomial time
 - But finding the solution may be hard
- For ease of comparison, problems are usually stated as yes-or-no questions

• Example 1:

- Given a weighted graph G and a bound k, does G have a spanning tree of weight at most k?
- This is in P because we have an algorithm for the MST with runtime O(m + n log n)

• Example 2:

- Given graph G, does G have a Hamiltonian cycle (a simple cycle that visits all vertices)?
- This is in NP because, given a possible solution, we can check in polynomial time that it's a cycle and that it visits all vertices exactly once

Current Status: P vs. NP

- It's easy to show that P ⊆ NP
- Most researchers believe that P ≠ NP
 - But at present, no proof
 - We do have a large collection of NP-complete problems
 - If any NP-complete problem has a polynomial time algorithm, then they all do

- A problem B is NP-complete if
 - it is in NP
 - any other problem in NP reduces to it efficiently
- Thus by making use of an imaginary fast subroutine for B, any problem in NP could be solved in polynomial time
 - the Boolean satisfiability problem is NP-complete [Cook 1971]
 - many useful problems are NPcomplete [Karp 1972]
 - By now thousands of problems are known to be NP-complete

Some NP-Complete Problems

- Graph coloring: Given graph G and bound k, is G k-colorable?
- Planar 3-coloring: Given planar graph G, is G 3-colorable?
- Traveling salesperson: Given weighted graph G and bound k, is there a cycle of cost ≤ k that visits each vertex at least once?
- Hamiltonian cycle: Give graph G, is there a cycle that visits each vertex exactly once?
- Knapsack: Given a set of items i with weights w_i and values v_i, and numbers W and V, does there exist a subset of at most W items whose total value is at least V?

- What if you really need an algorithm for an NP-complete problem?
 - Some special cases can be solved in polynomial time
 - If you're lucky, you have such a special case
 - Otherwise, once a problem is shown to be NP-complete, the best strategy is to start looking for an approximation
- For a while, a new proof showing a problem NP-complete was enough for a paper
 - Nowadays, no one is interested unless the result is somehow unexpected

Final Exam

- Time and Place
 - Wednesday, Dec 5
 - 7:00pm 9:30pm
 - Multiple rooms:
 - Kennedy Hall 116
 - Call Aud
 - Thurston Hall 205
- Review Session
 - Monday, Dec 3
 - 4:00pm 5:00pm
 - Location: TBA

- Exam Conflicts
 - Email us TODAY!
- Office Hours
 - Continue until final exam
 - But there may be time changes...

Course Evaluations (2 Parts)

- CourseEval
 - Worth 0.5% of your course grade
 - Anonymous
 - We get a list of who completed the course evaluations and a list of responses, but no link between names & responses
 - http://www.engineering.cornell.edu/CourseEval
- CMS Survey
 - Worth another 0.5% of your course grade
 - Not anonymous
 - But no confidential questions

Becoming a Consultant

- Jealous of the glamorous life of a CS consultant?
 - We're recruiting next-semester consultants for CS1110 and CS2110
 - Interested students should fill out an application, available in 303 Upson

Good luck on the final!

Thanks for an enjoyable semester!

Have a great winter break!

