

What Makes a Good Algorithm?

- Suppose you have two possible algorithms or data structures that basically do the same thing; which is better?
- Well... what do we mean by better?
 - Faster?
 - Less space?
 - Easier to code?
 - Easier to maintain?
 - Required for homework?
- How do we measure time and space for an algorithm?

Sample Problem: Searching Determine if a sorted array of integers contains a given integer • First solution: Linear Search (check each element) static boolean find(int[] a, int item) { for (int i = 0; i < a.length; i++) { if (a[i] == item) return true;</pre> eturn false; static boolean find(int[] a, int item) { (int x : a) { if (x == item) return true; return false;

Sample Problem: Searching Second solution: static boolean find (int[] a, int item) { Binary Search int low = 0; int high = a.length - 1; int ingn = a.tengon 1; while (low <= high) { int mid = (low + high)/2; if (a[mid] < item) low = mid + 1;</pre> else if (a[mid] > item) high = mid - 1;

Linear Search vs Binary Search

- · Which one is better?
 - Linear Search is easier to program
 - But Binary Search is faster... isn't it?
- How do we measure to show that one is faster than the other
 - Experiment
 - Proof
- · Which inputs do we use?

- •Simplifying assumption #1:
 - Use the size of the input rather than the input itself
 - For our sample search problem, the input size is n +1 where n is the array size
- Simplifying assumption #2:
 - Count the number of "basic steps" rather than computing exact times

One Basic Step = One Time Unit

- Basic step:

 - input or output of a scalar value
 accessing the value of a scalar variable, array element, or field of an object
 - assignment to a variable, array element, or field of an object

 - object
 a single arithmetic or logical
 operation
 method invocation (not
 counting argument evaluation
 and execution of the method
- For a conditional, count number of basic steps on the branch that is executed
- For a loop, count number of basic steps in loop body times the number of iterations
- For a method, count number of basic steps in method body (including steps needed to prepare stack-frame)

Runtime vs Number of Basic Steps

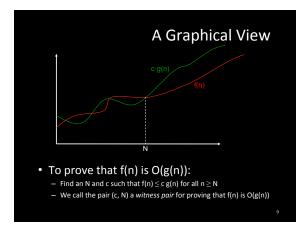
- But is this cheating?
- The runtime is not the same as the number of basic steps
- Time per basic step varies depending on computer, on compiler, on details of code...
- Well...yes, in a way
 - But the number of basic steps is proportional to the actual runtime
- · Which is better?
 - n or n² time?
 100 n or n² time?
 - 10,000 n or n² time?
- As n gets large, multiplicative constants become less important
 - Simplifying assumption #3:
 - Ignore multiplicative constants

Using Big-O to Hide Constants

- We say f(n) is order of g(n) if f(n) is bounded by a constant times g(n)
- Notation: f(n) is O(g(n))
- Roughly, f(n) is O(g(n)) means that f(n) grows like g(n) or slower, to within a constant factor
- "Constant" means fixed and independent of n

Formal definition:

f(n) is O(g(n)) if there exist constants c and N such that for all $n \ge N$, $f(n) \le c \cdot g(n)$



Big-O Examples

- Claim: 100 n + log n is O(n)
 - We know log n ≤ n for $n \ge 1$
 - So 100 n + log n ≤ 101 n for n ≥ 1
 - So by definition, $100 \text{ n} + \log \text{ n}$ is O(n) for c = 101 and N = 1
- Claim: log_B n is O(log_A n)
 - since $log_B n$ is $(log_B A)(log_A n)$
- Question: Which grows faster, n or log n?

Big-O Examples

- Let $f(n) = 3n^2 + 6n 7$
- f(n) is O(n²)
 f(n) is O(n³)
- f(n) is O(n⁴)
- ...
- g(n) = 4 n log n + 34 n 89
 - g(n) is O(n log n)
 g(n) is O(n²)
- $h(n) = 20 \cdot 2^n + 40n$
- h(n) is O(2ⁿ)
- a(n) = 34
- a(n) is O(1)

term that grows most rapidly

Problem-Size Examples

 Suppose we have a computing device that can execute 1000 operations per second; how large a problem can we solve?

	1 second	1 minute	1 hour
n	1000	60,000	3,600,000
n log n	140	4893	200,000
n²	31	244	1897
3n²	18	144	1096
n³	10	39	153
2 ⁿ	9	15	21

Commonly Seen Time Bounds					
O(1)	constant	excellent			
O(log n)	logarithmic	excellent			
O(n)	linear	good			
O(n log n)	n log n	pretty good			
O(n²)	quadratic	often OK			
O(n³)	cubic	maybe OK			
O(2 ⁿ)	exponential	too slow			
			13		

Worst-Case/Expected-Case Bounds

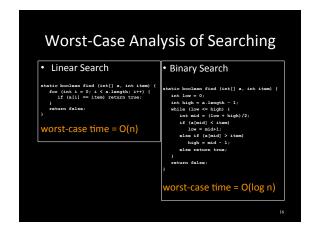
- We can't possibly determine time bounds for all possible inputs of size n
- Simplifying assumption #4:
 Determine number of steps for either
 - worst-case: Determine how much time is needed for the worst possible input of size n
 - expected-case: Determine how much time is needed on average for all inputs of size n

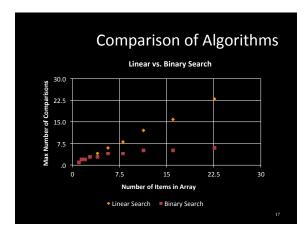
14

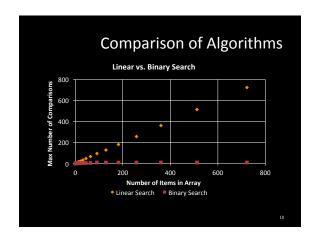
Our Simplifying Assumptions

- Use the size of the input rather than the input itself n
- Count the number of "basic steps" rather than computing exact times
- Multiplicative constants and small inputs ignored (order-of, big-O)
- Determine number of steps for either
 - worst-case
 - expected-case
- → These assumptions allow us to analyze algorithms effectively and easily

15







Analysis of Matrix Multiplication

- Code for multiplying n-by-n matrices A and B:
 - By convention, matrix problems are measured in terms of n, the number of rows and columns
 - Note that the input size is really 2n2, not n
 - Worst-case time is O(n³)
 - Expected-case time is also O(n3)

```
for (i = 0; i < n; i++)
for (j = 0; j < n; j++) {
                C[i][j] = 0;
for (k = 0; k < n; k++)
                         C[i][j] += A[i][k]*B[k][j];
```

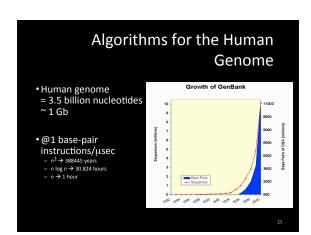
Remarks

- Once you get the hang of this, you can quickly zero in on what is relevant for determining asymptotic complexity
 - For example, you can usually ignore everything that is not in the innermost loop. Why?
- Main difficulty:
 - Determining runtime for recursive programs

Why Bother with Runtime Analysis?

- Computers are so fast these days that we can do whatever we want using just simple algorithms and data structures, right?
- Well...not really data-structure/algorithm improvements can be a very big win
- Scenario:
 - A runs in n² msec
 - A' runs in n²/10 msec
 B runs in 10 n log n msec
- Problem of size n=103
- A: 10³ sec ≈ 17 minutes
 A': 10² sec ≈ 1.7 minutes
- B: 10² sec ≈ 1.7 minutes
- Problem of size n=10⁶
 A: 10⁹ sec ≈ 30 years

 - A': 10⁸ sec ≈ 3 years
 B: 2·10⁵ sec ≈ 2 days
- 1 day = 86,400 sec
- 1,000 days ≈ 3 years



Limitations of Runtime Analysis

- Big-O can hide a very large constant
 - Example: small problems; "break even" points
- The specific problem you want to solve may not be the worst case
 - Example: Simplex method for linear programming
- Your program may not be run often enough to make analysis worthwhile
 - Example: one-shot vs. every day
 - You may be analyzing and improving the wrong part of the program
- · Should also use profiling tools

Summary

- Asymptotic complexity
 - Used to measure of time (or space) required by an algorithm
 - Measure of the algorithm, not the problem
- Searching a sorted array
 - Linear search: O(n) worst-case time
 - Binary search: O(log n) worst-case time
- Matrix operations:
 - Note: n = number-of-rows = number-of-columns
 - Matrix-vector product: O(n²) worst-case time
 - Matrix-matrix multiplication: O(n3) worst-case
- · More later with sorting and graph algorithms