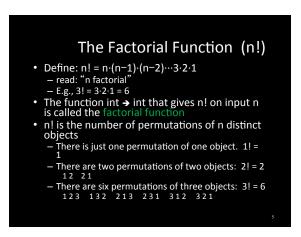
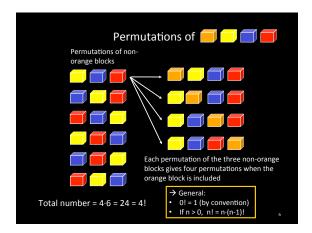
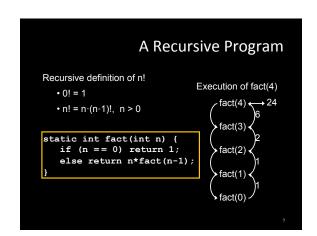


Recursion Overview • Recursion is a powerful technique for specifying functions, sets, and programs • Example recursively-defined functions and programs - factorial - combinations - exponentiation (raising to an integer power) - solution of combinatorial problems (i.e. search) • Example recursively-defined sets - grammars - expressions - data structures (lists, trees, ...)

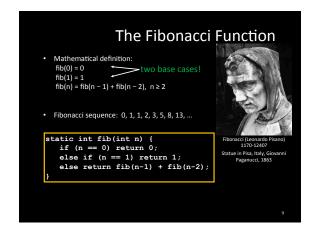






General Approach to Writing Recursive Functions

- Try to find a parameter, say n, such that the solution for n can be obtained by combining solutions to the same problem using smaller values of n (e.g., (n-1)!) (i.e. recursion)
- Find base case(s) small values of n for which you can just write down the solution (e.g., 0! = 1)
- Verify that, for any valid value of n, applying the reduction of step 1 repeatedly will ultimately hit one of the base cases



Recursive Execution

static int fib(int n) {
 if (n == 0) return 0;
 else if (n == 1) return 1;
 else return fib(n-1) + fib(n-2);
}

Execution of fib(4):

fib(3)

fib(4)

fib(2)

fib(1)

fib(1)

fib(0)

Combinations
(a.k.a. Binomial Coefficients)

• How many ways can you choose r items from a set of n distinct elements? $\binom{n}{r}$ "n choose r" $-\binom{5}{2} = \text{number of } 2\text{-element subsets of } \{A,B,C,D,E\}$ • 2-element subsets containing A: $\binom{4}{1}$ (A,B), {A,C}, (A,D), {A,E}
• 2-element subsets not containing A: $\binom{4}{6}$, $\binom{5}{6}$, $\binom{6}{6}$, $\binom{5}{6}$, $\binom{6}{6}$, $\binom{5}{6}$, $\binom{$

Binomial Coefficients • Combinations are also called binomial coefficients because they appear as coefficients in the expansion of the binomial $(x+y)^n$ $(x+y)^n = \binom{n}{0} x^n + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^2 + \dots + \binom{n}{n} y^n$

Multiple Base Cases

```
\binom{n}{r} = \binom{n-1}{r} + \binom{n-1}{r-1}, n > r > 0
\binom{n}{0} = 1
\binom{n}{0} = 1
Two base cases
```

- Coming up with right base cases can be tricky!
- · General idea:
 - Determine argument values for which recursive case does not apply
 - Introduce a base case for each one of these

```
Recursive Program for Combinations
                          \begin{pmatrix} n \\ r \end{pmatrix} = \begin{pmatrix} n-1 \\ r \end{pmatrix} + \begin{pmatrix} n-1 \\ r-1 \end{pmatrix}, n > r > 0 
 \begin{pmatrix} n \\ n \end{pmatrix} = 1 
static int combs(int n, int r) {    //assume n>=r>=(
    if (r == 0 || r == n) return 1; //base cases
      else return combs(n-1,r) + combs(n-1,r-1);
```

Positive Integer Powers

- aⁿ = a·a·a···a (n times)
- Alternate description:

```
-a^0 = 1
-a^{n+1} = a \cdot a^n
 static int power(int a, int n) {
    if (n == 0) return 1;
    else return a*power(a,n-1);
```

A Smarter Version

- Power computation:
 - $-a^0 = 1$
- If n is nonzero and even, aⁿ = (a^{n/2})²
- If n is odd, an = a·(a^{n/2})²
 Java note: If x and y are integers, "x/y" returns the integer part of the quotient
- - $a^5 = a \cdot (a^{4/2})^2 = a \cdot (a^2)^2 = a \cdot ((a^{2/2})^2)^2 = a \cdot (a^2)^2$ Note: this requires 3 multiplications rather than 5!
- What if n were larger?

 - Savings would be more significant
 Straightforward computation: n multiplications
 - Smarter computation: log(n) multiplications

Smarter Version in Java

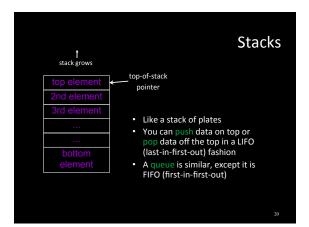
• n = 0: $a^0 = 1$

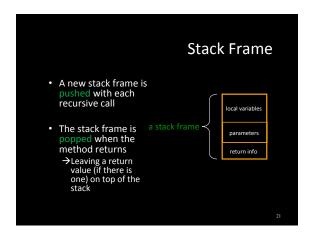
• n nonzero and even: $a^n = (a^{n/2})^2$ • n nonzero and odd: $a^n = a \cdot (a^{n/2})^2$ local variab if (n == 0) return 1; int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower; return halfPower*halfPower*a;

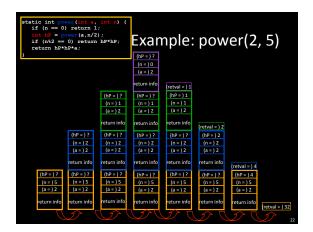
- The method has two parameters and a local variable
- Why aren't these overwritten on recursive calls?

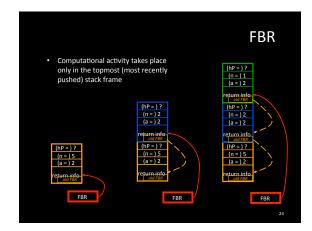
Implementation of Recursive Methods

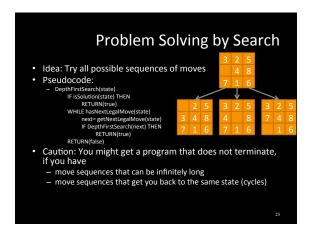
- · Key idea:
 - Use a stack to remember parameters and local variables across recursive calls
 - Each method invocation gets its own stack frame
- · A stack frame contains storage for
 - Local variables of method
 - Parameters of method
 - Return info (return address and return value)
 - Perhaps other bookkeeping info











Conclusion

- Recursion is a convenient and powerful way to define functions
- Problems that seem insurmountable can often be solved in a "divide-and-conquer" fashion:
 Reduce a big problem to smaller problems of the same kind, solve the smaller problems
 Recombine the solutions to smaller problems to form solution for big problem
- Important applications:
 - Parsing (next lecture)Collision detection