Median Finding Algorithm

Submitted By:

Arjun Saraswat
Nishant Kapoor

Problem Definition

Given a set of " n " unordered numbers we want to find the " k th" smallest number. (k is an integer between 1 and n).

A Simple Solution

A simple sorting algorithm like heapsort will take Order of $\mathrm{O}\left(\mathrm{nlg}_{2} \mathrm{n}\right)$ time.

Step
Sort n elements using heapsort Return the $\mathrm{k}^{\text {th }}$ smallest element Total running time

Running Time
$\mathrm{O}\left(\mathrm{n} \log _{2} \mathrm{n}\right)$
$\mathrm{O}(1)$
$\mathrm{O}\left(\mathrm{n} \log _{2} \mathrm{n}\right)$

Linear Time selection algorithm

- Also called Median Finding Algorithm. Find k th smallest element in $\mathrm{O}(\mathrm{n})$ time in worst case.
Uses Divide and Conquer strategy. Uses elimination in order to cut down the running time substantially.

Steps to solve the problem

Step 1: If n is small, for example $\mathrm{n}<6$, just sort and return the $k^{\text {th }}$ smallest number in constant time i.e; $\mathrm{O}(1)$ time.

Step 2: Group the given number in subsets of 5 in $O(n)$ time.

Step3: Sort each of the group in O (n)

 time. Find median of each group.Given a set
(.......2,5,9,19,24,54,5,87,9,10,44,32,21
,13,24,18,26,16,19,25,39,47,56,71,91,6 $1,44,28$.$) having n$ elements.

Arrange the numbers in groups of five

Find median of $\mathrm{N} / 5$ groups

Find the Median of each group

Find the sets L and R

Compare each n -1 elements with the median m and find two sets L and R such that every element in L is smaller than M and every element in R is greater than m.

$3 n / 10<L<7 n / 10$
$3 n / 10<R<7 n / 10$

Description of the Algorithm step

- If n is small, for example $\mathrm{n}<6$, just sort and return the k the smallest number. (Bound time-7)
- If $n>5$, then partition the numbers into groups of 5.(Bound time $n / 5$)
- Sort the numbers within each group. Select the middle elements (the medians). (Bound time- $7 \mathrm{n} / 5$)
Call your "Selection" routine recursively to find the median of $n / 5$ medians and call it m . (Bound time- $\mathrm{T}_{\mathrm{n} / 5}$)
- Compare all $n-1$ elements with the median of medians m and determine the sets L and R, where L contains all elements $<m$, and R contains all elements $>\mathrm{m}$. Clearly, the rank of m is $r=|\mathrm{L}|+1(|\mathrm{~L}|$ is the size or cardinality of L). (Bound time- n)

Contd....

If $\mathrm{k}=\mathrm{r}$, then return m
If $k<r$, then return $k{ }^{\text {th }}$ smallest of the set L.(Bound time $T_{7 n / 10}$)
If $k>r$, then return $k-r{ }^{\text {th }}$ smallest of the set R.

Recursive formula

$T(n)=0(n)+T(n / 5)+T(7 n / 10)$

We will solve this equation in order to get the complexity. We assume that $T(n)<C^{*} n$
$T(n)=a * n+T(n / 5)+T(7 n / 10)$
$C^{*} n>=T(n / 5)+T(7 n / 10)+a^{*} n$
$C^{*} n>=C^{*} n / 5+C^{*} 7 * n / 10+a * n$
C > = 9* $C / 10+a$
C/10 >= a
C $>=10 * a$
There is such a constant that exists....so $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n})$

Why group of 5 why not some other term??

If we divide elements into groups of 3 then we will have

$$
T(n)=O(n)+T(n / 3)+T(2 n / 3) \text { so } T(n)>0(n) \ldots .
$$

If we divide elements into groups of more than 5 , the value of constant 5 will be more, so grouping elements in to 5 is the optimal situation.

