
Median Finding Algorithm

Submitted By:

Arjun Saraswat

Nishant Kapoor

Problem Definition

 Given a set of "n" unordered numbers we
want to find the "k th" smallest number. (k is
a n i n t e g e r b e t w e e n 1 a n d n) .

A Simple Solution

 A simple sorting algorithm like heapsort will take
Order of O(nlg2n) time.

Step Running Time

Sort n elements using heapsort O(nlog2n)

Return the kth smallest element O(1)

Total running time O(nlog2n)

Linear Time selection
algorithm

 Also called Median Finding Algorithm.

 Find k th smallest element in O (n) time
in worst case.

 Uses Divide and Conquer strategy.

 Uses elimination in order to cut down
the running time substantially.

Steps to solve the problem

 Step 1: If n is small, for example n<6,
just sort and return the kth smallest
number in constant time i.e; O(1) time.

 Step 2: Group the given number in
s u b s e t s o f 5 i n O (n) t i m e .

 Step3: Sort each of the group in O (n)
time. Find median of each group.

 Given a set
(……..2,5,9,19,24,54,5,87,9,10,44,32,21
,13,24,18,26,16,19,25,39,47,56,71,91,6
1,44,28………) having n elements.

5

9

19

24

2

10

9

87

5

54

2

13

32

44

19

16

26

18

4

71

56

47

39

25………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

21

Arrange the numbers in groups of five

Find median of N/5 groups

5

9

19

24

2

87

54

10

9

5

44

32

13

2

26

19

18

16

4

71

56

47

39

25………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

21

Median of each group

5

9

19

24

2

87

54

10

9

5

44

32

13

2

26

19

18

16

4

71

56

47

39

25………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

………………..

Find the Median of each group

Find m ,the median of medians

21

3.n/10

Find the sets L and R

 Compare each n-1 elements with the median m and find two
sets L and R such that every element in L is smaller than M and
every element in R is greater than m.

m

L R

3n/10<L<7n/10 3n/10<R<7n/10

Description of the Algorithm step

 If n is small, for example n<6, just sort and return the k the smallest

number.(Bound time- 7)

 If n>5, then partition the numbers into groups of 5.(Bound time n/5)

 Sort the numbers within each group. Select the middle elements (the

medians). (Bound time- 7n/5)

 Call your "Selection" routine recursively to find the median of n/5

medians and call it m. (Bound time-Tn/5)

 Compare all n-1 elements with the median of medians m and

determine the sets L and R, where L contains all elements <m, and R

contains all elements >m. Clearly, the rank of m is r=|L|+1 (|L| is the

size or cardinality of L). (Bound time- n)

Contd….

 If k=r, then return m

 If k<r, then return k th smallest of the set L .(Bound time T7n/10)

 If k>r, then return k-r th smallest of the set R.

Recursive formula

 T (n)=O (n) + T (n/5) +T (7n/10)
We will solve this equation in order to get the complexity.

We assume that T (n)< C*n

T (n) = a*n + T (n/5) + T (7n/10)

C*n >= T(n/5) +T(7n/10) + a*n

C*n >= C*n/5+ C*7*n/10 + a*n

C >= 9*C/10 +a

C/10 >= a

C >= 10*a

There is such a constant that exists….so T (n) = O (n)

Why group of 5 why not some other term??

 If we divide elements into groups of 3 then we will have

T (n) = O (n) + T (n/3) + T (2n/3) so T (n) > O (n)…..

 If we divide elements into groups of more than 5, the value of
constant 5 will be more, so grouping elements in to 5 is the
optimal situation.

