

Balanced Search Trees

Lecture 22 CS211 – Summer 2007

Some Search Structures

- Sorted Arrays
 - Advantages
 - Search in O(log n) time (binary search)
 - Disadvantages
 - Need to know size in advance
 - ullet Insertion, deletion O(n) need to shift elements
- Lists
 - Advantages
 - No need to know size in advance
 - Insertion, deletion O(1) (not counting search time)
 - Disadvantages
 - Search is $\widecheck{O}(n)$, even if list is sorted

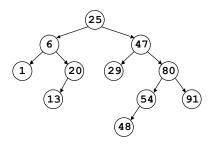
Balanced Search Trees

- Best of both!
 - Search, insert, delete in O(log n) time
 - No need to know size in advance
- · Many flavors
 - AVL trees, 2-3 trees, red-black trees, skip lists, random treaps, splay trees...

Review – Binary Search Trees

- Every node has a *left child*, a *right child*, both, or neither
- Data elements are drawn from a totally ordered set (e.g., Comparable)
- Every node contains one data element
- Data elements are ordered in *inorder*

A Binary Search Tree

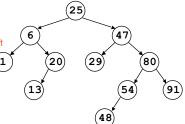


Binary Search Trees

In any subtree:

all elements
 smaller than the
 element at the
 root are in the left
 subtree

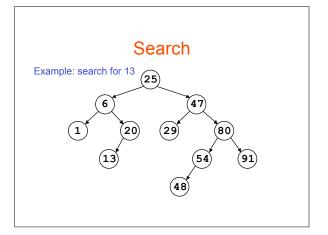
all elements
 larger than the
 element at the
 root are in the
 right subtree

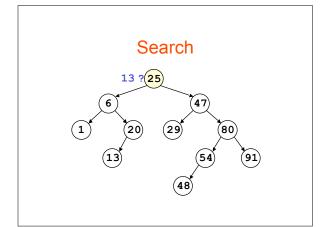


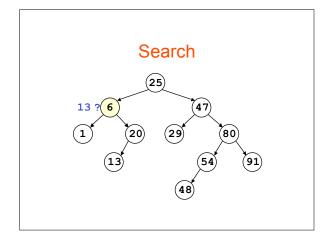
Search

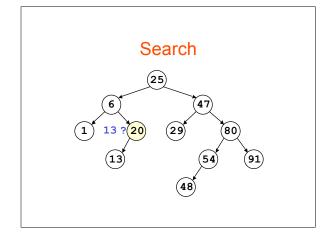
To search for an element x:

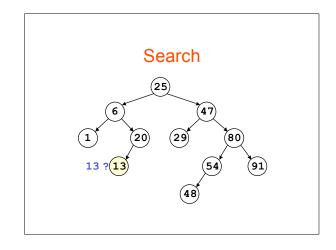
- if tree is empty, return false
- if x = object at root, return true
- If x < object at root, search left subtree
- If x > object at root, search right subtree











Search (25)

Search

```
boolean treeSearch(Comparable x,
                   TreeNode t) {
  if (t == null) return false;
  switch (x.compareTo(t.data)) {
    case 0: return true; //found
    case 1: return treeSearch(x, t.right);
    default: return treeSearch(x, t.left);
```

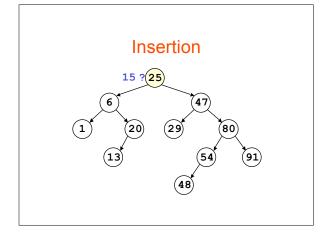
Insertion

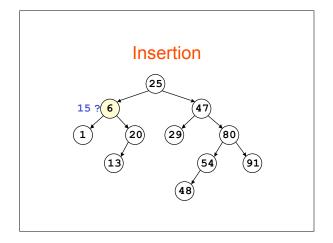
To insert an element x:

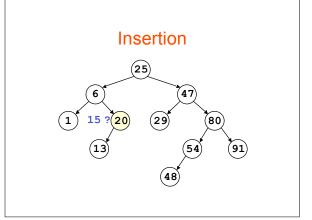
- search for x if there, just return
- when arrive at a leaf y, make x a child of y

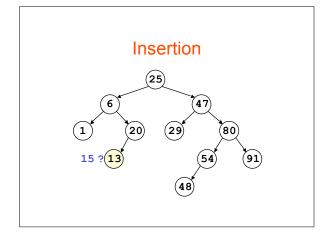
 - left child if x < yright child if x > y

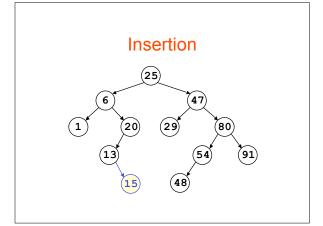
Insertion Example: insert 15 (25) 6 47) (80) (91)

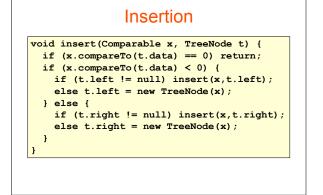












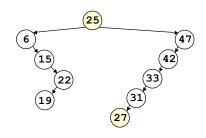
Deletion

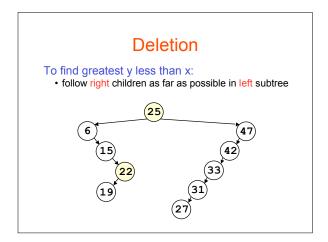
To delete an element x:

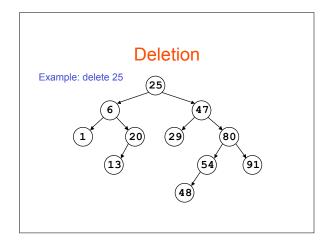
- remove x from its node this creates a hole
- if the node was a leaf, just delete it
- find greatest y less than x in the left subtree (or least y greater than x in the right subtree), move it to x's node
- this creates a hole where y was repeat

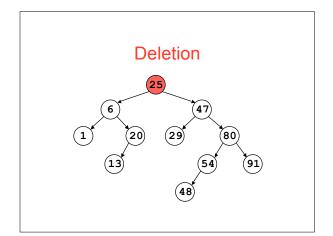
Deletion

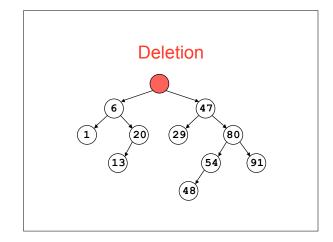
To find least y greater than x:
• follow left children as far as possible in right subtree

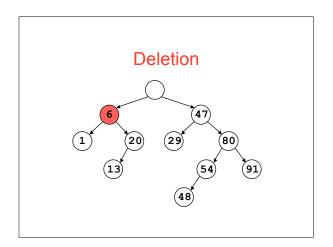


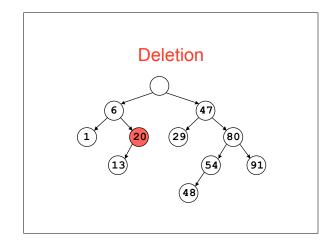


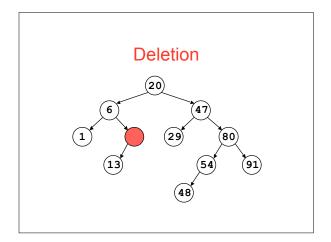


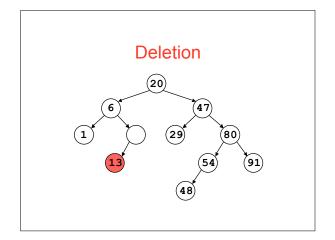


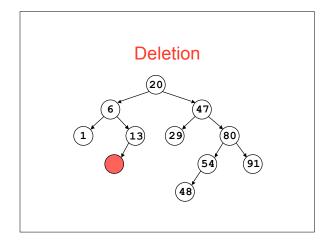


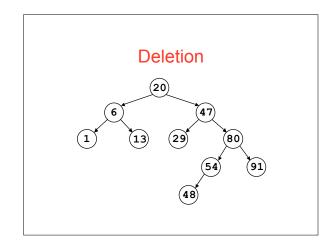


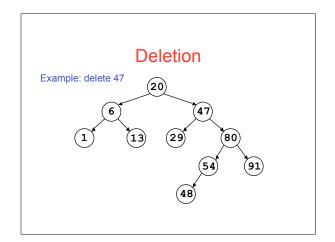


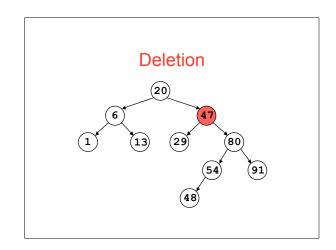


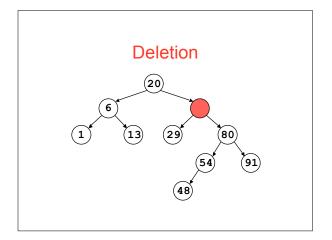


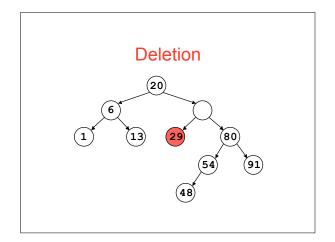


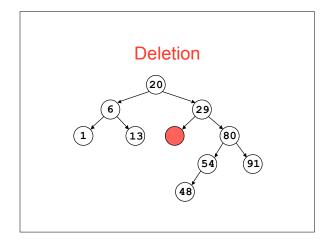


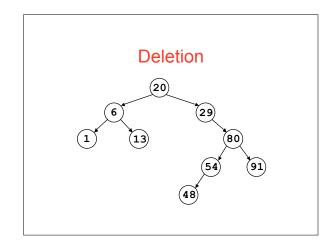


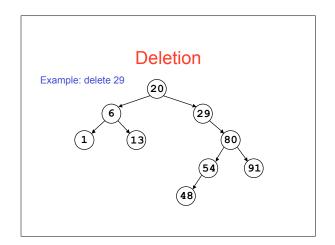


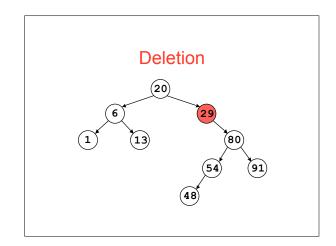


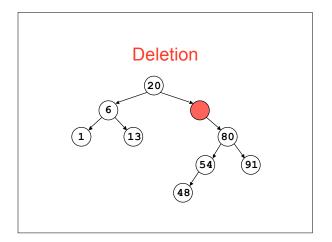


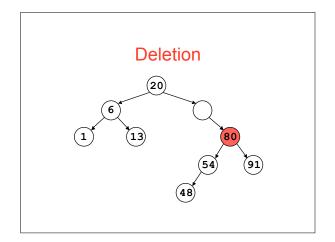


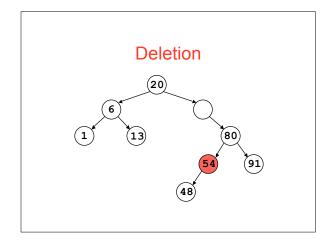


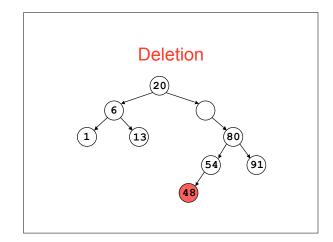


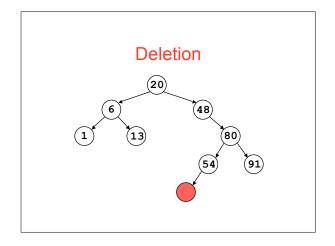


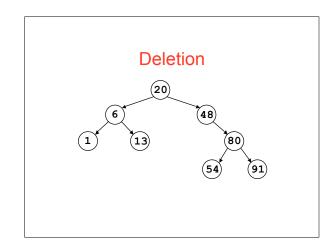










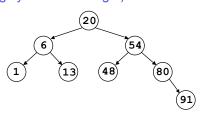


Observation

- These operations take time proportional to the height of the tree (length of the longest path)
- O(n) if tree is not sufficiently balanced

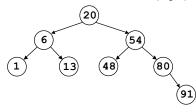
Solution

Try to keep the tree *balanced* (all paths roughly the same length)



Balanced Trees

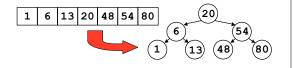
- · Size is exponential in height
- Height = log₂(size)
- Search, insert, delete will be O(log n)



Creating a Balanced Tree

Creating one from a sorted array:

- Find the median, place that at the root
- Recursively form the left subtree from the left half of the array and the right subtree from the right half of the array



Keeping the Tree Balanced

- Insertions and deletions can put tree out of balance – we may have to rebalance it
- Can we do this efficiently?

AVL Trees

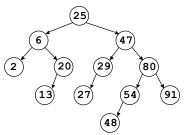
Adelson-Velsky and Landis, 1962

AVL Invariant:

The difference in height between the left and right subtrees of any node is never more than one

An AVL Tree

- Nonexistent children are considered to have height -1
- Note that paths can differ in length by more than 1 (e.g., paths to 2, 48)



AVL Trees are Balanced

The AVL invariant implies that:

- · Size is at least exponential in height • n $\geq \varphi^d$, where $\varphi = (1 + \sqrt{5})/2 \sim 1.618$, the golden ratio!
- Height is at most logarithmic in size • $d \le \log n / \log \varphi \sim 1.44 \log n$

AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right subtrees of any node is never more than one

To see that $n \ge \varphi^d$, look at the *smallest* possible AVL trees of each height

AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right subtrees of any node is never more than one

To see that $n \ge \varphi^d$, look at the *smallest* possible AVL trees of each height

AVL Trees are Balanced

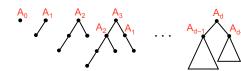
AVL Invariant:

The difference in height between the left and right subtrees of any node is never more than one

To see that $n \ge \varphi^d$, look at the *smallest* possible AVL trees of each height

AVL Trees are Balanced

$$\begin{split} &A_0 = 1 \\ &A_1 = 2 \\ &A_d = A_{d-1} + A_{d-2} + 1, \quad d \geq 2 \end{split}$$



AVL Trees are Balanced

$$A_0 = 1$$

 $A_1 = 2$
 $A_d = A_{d-1} + A_{d-2} + 1$, $d \ge 2$
1 2 4 7 12 20 33 54 88 ...

AVL Trees are Balanced

$$\begin{array}{l} A_0=1\\ A_1=2\\ A_d=A_{d-1}+A_{d-2}+1,\ d\geq 2\\ \\ 1\ 2\ 4\ 7\ 12\ 20\ 33\ 54\ 88\ ...\\ \\ 1\ 1\ 2\ 3\ 5\ 8\ 13\ 21\ 34\ 55\ ...\\ \\ The\ Fibonacci\ sequence \end{array}$$

AVL Trees are Balanced

$$\begin{array}{l} A_0 = 1 \\ A_1 = 2 \\ A_d = A_{d-1} + A_{d-2} + 1, \quad d \geq 2 \\ \\ 1 \quad 2 \quad 4 \quad 7 \quad 12 \quad 20 \quad 33 \quad 54 \quad 88 \quad ... \\ \\ 1 \quad 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad 55 \quad ... \\ A_d = F_{d+2} - 1 = O(\phi^d) \end{array}$$

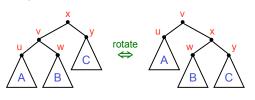
Rebalancing

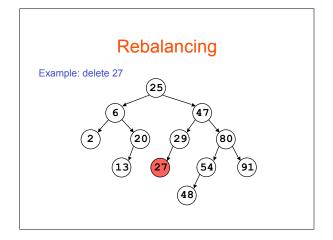
- Insertion and deletion can invalidate the AVL invariant
- May have to rebalance

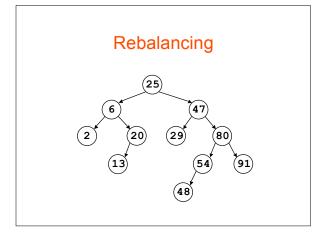
Rebalancing

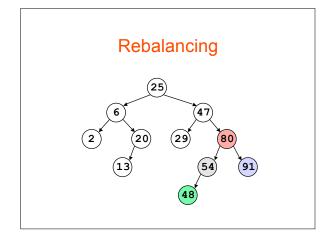
Rotation

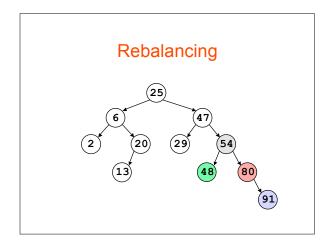
- A local rebalancing operation
- Preserves inorder ordering of the elements
- The AVL invariant can be reestablished with at most O(log n) rotations up and down the tree

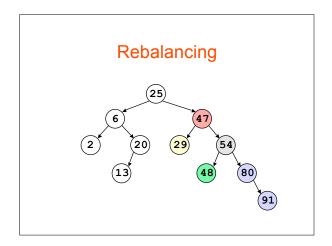


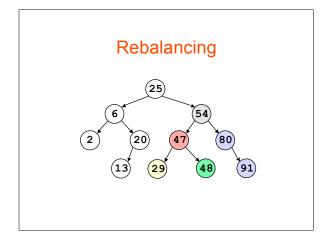










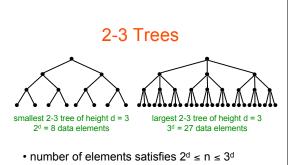


2-3 Trees

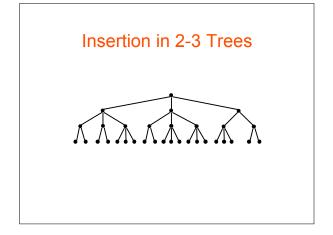
Another balanced tree scheme

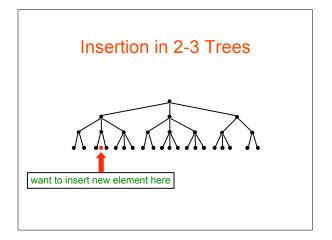
- Data stored only at the leaves

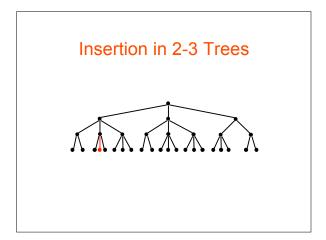
- Ordered left-to-right
 All paths of the same length
 Every non-leaf has either 2 or 3 children
 Each internal node has smallest, largest element in its subtree (for searching)

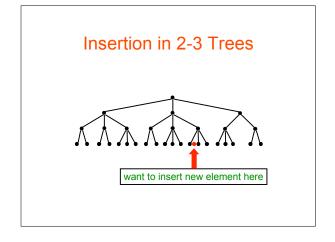


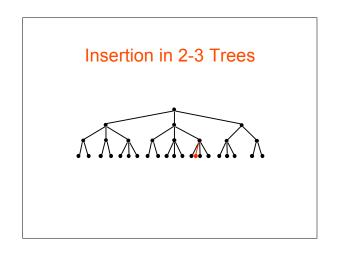
• height satisfies d ≤ log n







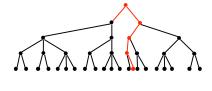




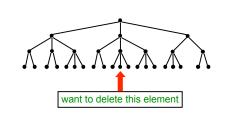
Insertion in 2-3 Trees

Insertion in 2-3 Trees

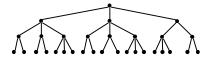
Insertion in 2-3 Trees



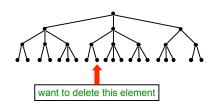
Deletion in 2-3 Trees



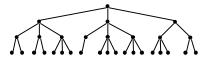
Deletion in 2-3 Trees



Deletion in 2-3 Trees



Deletion in 2-3 Trees



If neighbor has 3 children, borrow one

Deletion in 2-3 Trees

If neighbor has 3 children, borrow one

Deletion in 2-3 Trees



If neighbor has 2 children, coalesce with neighbor

Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Splay trees

- Whenever a search() is carried out, the target node is splayed to the root of the tree
 - The splays promote balance
 - Frequently-accessed nodes rise towards the top of the tree
 - Splay trees good choice when searches are biased
- Splay trees are easier to implement than AVL and 2-3 trees, but asymptotically just as fast

Conclusion

Balanced search trees are good

- Search, insert, delete in O(log n) time
- No need to know size in advance
- Several different versions
 - AVL trees, 2-3 trees, red-black trees, skip lists, random treaps, Huffman trees, ...
 - find out more about them in CS482