

Announcements

- Prelim tomorrow!
 - Try to arrive a little early
 - Exam will begin at 10:00, end at 11:15
 - Topics include everything covered up to and including last Friday's class
- Assignment 2 is graded
 - Regrade requests due Wednesday, 11:59PM
- Assignment 3 is (still) posted
 - Due Thursday 11:59PM
 - Check newsgroup for clarifications, corrections, etc.

2

Analysis of Merge-Sort

Recurrence:

$$T(n) = c + d + e + f + 2T(n/2) + gn + h$$
 \leftarrow recurrence $T(1) = i$ \leftarrow base case

How do we solve this recurrence?

Analysis of Merge-Sort

Recurrence:

```
T(n) = c + d + e + f + 2T(n/2) + gn + h
T(1) = i
```

First, simplify by dropping lower-order terms

Simplified recurrence:

$$T(n) = 2T(n/2) + gn$$

 $T(1) = i$

How do we find the solution?

Solving Recurrences

- Unfortunately, solving recurrences is like solving differential equations
 - No general technique works for all recurrences
- Luckily, can get by with a few common patterns
- You will learn some more techniques in CS 280

• T(2) = 2c

Solution is T(n) = O(n log n)

• Recurrence for MergeSort

■ T(n) = 2T(n/2) + cn

Analysis of Merge-Sort

- Proof: strong induction on n
- Show that

 $T(2) \le 2c$ $T(n) \le 2T(n/2) + cn$ imply

 $T(n) \le cn \log n$

• Basis

 $T(2) \le 2c = c \ 2 \log 2$

• Induction step

 $T(n) \le 2T(n/2) + cn$ $\le 2(cn/2 \log n/2) + cn$ (IH) = cn (log n - 1) + cn= cn log n

Solving Recurrences

- Recurrences are important when designing divide & conquer algorithms
- Solution techniques:
 - Can sometimes change variables to get a simpler recurrence
 Make a guess, then prove the guess correct by induction

 - Build a recursion tree and use it to determine solution
 - Can use the Master Method
 - A "cookbook" scheme that handles many common recurrences

Master Method

• To solve recurrences of the form

T(n) = aT(n/b) + f(n),

with constants a≥0, b>1, compare f(n) with nlog_ba

- if f(n) grows more rapidly,
 - Solution is T(n) = O(f(n))
- if nlog_ba grows more rapidly
 - Solution is T(n) = O(nlog,a)
- if both grow at same rate
 - Solution is T(n) = O(f(n) log n)
- Not an exact statement of the theorem f(n) must be "well-behaved"

Recurrence Examples

T(n) = T(n)	(n-1)	+ 1	→	T(n)	= O(n) Linear Search

• T(n) = T(n-1) + n $\mathsf{T}(\mathsf{n}) = \mathsf{O}(\mathsf{n}^2)$ QuickSort worst-case

• T(n) = T(n/2) + 1 $T(n) = O(\log n)$ Binary Search

• T(n) = T(n/2) + nT(n) = O(n)

• T(n) = 2 T(n/2) + n $T(n) = O(n \log n)$ MergeSort

• T(n) = 2 T(n - 1) $T(n) = O(2^n)$

• T(n) = 4 T(n/2) + n $\mathsf{T}(\mathsf{n}) = \mathsf{O}(\mathsf{n}^2)$

	10	50	100	300	1000
5n	50	250	500	1500	5000
nlogn	33	282	665	2469	9966
п²	100	2500	10,000	90,000	1,000,000
п³	1000	125,000	1,000,000	27 million	1 billion
2n	1024	a 16-digit number	a 31-digit number	a 91-digit number	a 302-digit number
ï	3.6 million	a 65-digit number	a 161-digit number	a 623-digit number	unimaginably large
'n	10 billion	an 85-digit number	a 201-digit number	a 744-digit number	unimaginably large

- protons in the known universe ~ 126 digits
- μsec since the big bang ~ 24 digits
 - Source: D. Harel, Algorithmics

How long would it take @ 1 instruction / μsec ?

	10	20	50	100	300
Π²	1/10,000 sec	1/10,000 sec 1/2500 sec		1/100 sec	9/100 sec
J ₂	1/10 sec	3.2 sec	5.2 min	2.8 hr	28.1 days
2n	1/1000 sec	1 sec	35.7 yr	400 trillion centuries	a 75-digit number of centuries
'n	2.8 hr	3.3 trillion years	a 70-digit number of centuries	a 185-digit number of centuries	a 728-digit number of centuries

• The big bang was 15 billion years ago (5·10¹⁷ secs)

- Source: D. Harel, Algorithmics

11

The Fibonacci Function

· Mathematical definition:

fib(0) = 0 $fib(n) = fib(n-1) + fib(n-2), n \ge 2$

• Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, ...

static int fib(int n) { if (n == 0) return 0;
else if (n == 1) return 1; else return fib(n-1) + fib(n-2);

Fibonacci (Leonardo Pisano) 1170–1240?

Statue in Pisa. Italy Giovanni Paganucci

12

Recursive Execution static int fib(int n) { if (n == 0) return 0; else if (n == 1) return 1; else return fib(n-1) + fib(n-2);

Execution of fib(4): fib(2) fib(2) fib(1) fib(1) fib(0)fib(1) fib(0)

The Fibonacci Recurrence

```
static int fib(int n) {
   if (n == 0) return 0;
else if (n == 1) return 1;
   else return fib(n-1) + fib(n-2);
```

$$T(0) = c$$

 $T(1) = c$
 $T(n) = T(n-1) + T(n-2) + c$

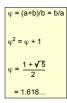
- Solution is exponential in n
- But not quite O(2n)...

14

The Golden Ratio

ratio of sum of sides (a+b) to longer side (b)

ratio of longer side (b) to shorter side (a)



15

13

Fibonacci Recurrence is $O(\varphi^n)$

- want to show $T(n) \le c\phi^n$
- have $\varphi^2 = \varphi + 1$
- multiplying by $c\phi^n$, $c\phi^{n+2} = c\phi^{n+1} + c\phi^n$
- · Basis:
 - $T(0) = c = c\phi^0$
 - $T(1) = c \le c\phi^1$
- · Induction step:
- $T(n+2) = T(n+1) + T(n) \le c\phi^{n+1} + c\phi^n = c\phi^{n+2}$

16

Can We Do Better?

```
if (n <= 1) return n;
int parent = 0;
int current = 1;
for (int i = 2; i \le n; i++) {
   int next = current + parent;
   parent = current;
   current = next;
return (current);
```

- Number of times loop is executed? Less than n
- Number of basic steps per loop? Constant
- Complexity of iterative algorithm = O(n)
- Much, much, much, much, better than $O(\phi^n)!$

...But We Can Do Even Better!

- Let f_n denote the nth Fibonacci number

 - $f_0 = 0$ $f_1 = 1$ $f_{n+2} = f_{n+1} + f_n, \quad n \ge 0$
- $\bullet \text{ Note that } \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{bmatrix} f_n \\ f_{n+1} \end{bmatrix} \ = \ \begin{pmatrix} f_{n+1} \\ f_{n+2} \end{pmatrix}, \text{ thus } \ \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \begin{pmatrix} f_0 \\ f_1 \end{pmatrix} \ = \ \begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix}$
- \bullet Can compute the nth power of a matrix by repeated squaring in O(log n) time
- Gives complexity O(log n)
- Just a little cleverness got us from exponential to logarithmic!

18

Matrix Multiplication in Less Than O(n³) (Strassen's Algorithm)

• Idea: naive 2 x 2 matrix multiplication takes 8 scalar multiplications, but we can do it in 7:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} s_1 + s_2 - s_4 + s_6 & s_4 + s_5 \\ s_6 + s_7 & s_2 - s_3 + s_5 - s_7 \end{pmatrix}$$

where

$$\begin{array}{lll} s_1 = (b-d)(g+h) & s_5 = a(f-h) \\ s_2 = (a+d)(e+h) & s_6 = d(g-e) \\ s_3 = (a-c)(e+f) & s_7 = e(c+d) \\ s_4 = h(a+b) & \end{array}$$

19

Now Apply This Recursively -Divide and Conquer!

- Break 2ⁿ⁺¹ x 2ⁿ⁺¹ matrices up into 4 2ⁿ x 2ⁿ submatrices
 Multiply them the same way

$$\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} E & F \\ G & H \end{pmatrix} = \begin{pmatrix} S_1 + S_2 - S_4 + S_6 & S_4 + S_5 \\ S_6 + S_7 & S_2 - S_3 + S_5 - S_7 \end{pmatrix}$$

where

$$\begin{array}{lll} S_1 = (B-D)(G+H) & S_5 = A(F-H) \\ S_2 = (A+D)(E+H) & S_6 = D(G-E) \\ S_3 = (A-C)(E+F) & S_7 = E(C+D) \\ S_4 = H(A+B) & \end{array}$$

20

Now Apply This Recursively -Divide and Conquer!

- Gives recurrence $M(n) = 7 M(n/2) + cn^2$ for the number of multiplications
- Solution is $M(n) = O(n^{\log 7}) = O(n^{2.81...})$
- Number of additions is O(n2), bound separately

21

Is That the Best You Can Do?

- How about 3 x 3 for a base case?
 - best known is 23 multiplications
 - not good enough to beat Strassen
- In 1978, Victor Pan discovered how to multiply 70 x 70 matrices with 143640 multiplications, giving O(n^{2.795...})
- Best bound to date (obtained by entirely different methods) is O(n^{2.376...}) (Coppersmith & Winograd 1987)
- Best known lower bound is still $\Omega(n^2)$

22

Moral: Complexity Matters!

• But you are acquiring the best tools to deal with it!

23