

Sorting

Lecture 12 CS211 – Summer 2007

InsertionSort

```
//sort a[], an array of int
for (int i = 1; i < a.length; i++) {
   int temp = a[i];
   int k;
   for (k = i; 0 < k && temp < a[k-1]; k--)
        a[k] = a[k-1];
   a[k] = temp;</pre>
```

- Many people sort cards this way
 Invariant: even thing to left of a left.
- Invariant: everything to left of i is already sorted
- Works especially well when input is nearly sorted
- Worst-case is O(n2)
 - Consider reverse-sorted input
- Best-case is O(n)
- Consider sorted input
- Expected case is O(n²)
 - Expected number of inversions is n(n-1)/4

2

SelectionSort

- To sort an array of size n:
- Examine a [0] to a [n-1]; find the smallest one and swap it with a [0].
- Examine a [1] to a [n-1]; find the smallest one and swap it with a [1]
- In general, in step i, examine
 a[i] to a[n-1]; find the
 smallest one and swap it with
- This is the other common way for people to sort cards
- Runtime
 - Worst-case O(n²)
 - Best-case O(n²)
- Expected-case O(n²)

3

Divide & Conquer?

- It often pays to
 - Break the problem into smaller subproblems,
 - Solve the subproblems separately, and then
 - Assemble a final solution
- This technique is called divide-and-conquer
 - Caveat: It won't help unless the *partitioning* and *assembly* processes are inexpensive
- Can we apply this approach to sorting?

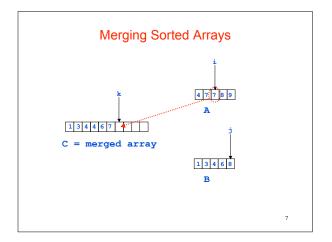
4

MergeSort

- Quintessential divide-and-conquer algorithm
- Divide array into equal parts, sort each part, then merge
- Questions:
 - Q1: How do we divide array into two equal parts?
 - A1: Find middle index: a . length/2
 - Q2: How do we sort the parts?
 - A2: call MergeSort recursively!
 - Q3: How do we merge the sorted subarrays?
 - A3: We have to write some (easy) code

Merging Sorted Arrays A and B

- Create an array c of size = size of a + size of b
- Keep three indices:
 - i into A
 - j into B
- Initialize all three indices to 0 (start of each array)
- Compare element A[i] with B[j], and move the smaller element into C[k]
- Increment $\mathbf i$ or $\mathbf j$, whichever one we took, and $\mathbf k$
- When either A or B becomes empty, copy remaining elements from the other array (B or A, respectively) into C



MergeSort Analysis

- Outline (detailed code on the website)
 - Split array into two halves
 - Recursively sort each half
 - Merge the two halves
- Merge = combine two sorted arrays to make a single sorted array
 - Rule: always choose the smallest item
- Time: O(n) where n is the combined size of the two arrays

- Runtime recurrence
 - Let T(n) be the time to sort an array of size n

 $\mathsf{T}(\mathsf{n}) = 2\mathsf{T}(\mathsf{n}/2) + \mathsf{O}(\mathsf{n})$

T(1) = 2T(1/2) + O(1)T(1) = 1

- Can show by induction that T(n) is O(n log n)
- Alternately, can see that T(n) is O(n log n) by looking at tree of recursive calls

3

MergeSort Notes

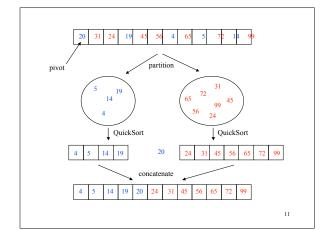
- Asymptotic complexity: O(n log n)
 - Much faster than O(n²)
- Disadvantage
 - Need extra storage for temporary arrays
 - In practice, this can be a disadvantage, even though MergeSort is asymptotically optimal for sorting
 - Can do MergeSort in place, but this is very tricky (and it slows down the algorithm significantly)
- Are there good sorting algorithms that do not use so much extra storage?
 - Yes: QuickSort

9

QuickSort

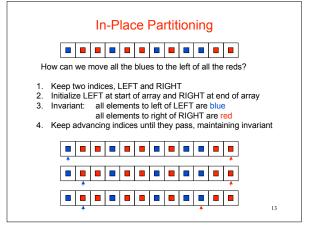
- Intuitive idea
 - Given an array A to sort, choose a pivot value p
 - Partition **A** into two subarrays, **AX** and **AY**
 - AX contains only elements ≤ p
 - AY contains only elements ≥ p
 - Sort subarrays **AX** and **AY** separately
 - Concatenate (not merge!) sorted Ax and Ay to get sorted A
 - Concatenation is easier than merging O(1)

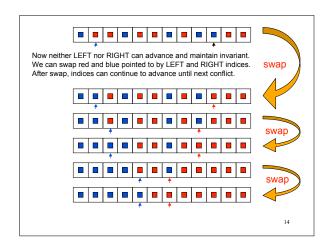
10

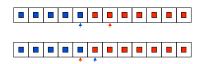


QuickSort Questions

- Key problems
 - How should we choose a *pivot*?
 - How do we partition an array in place?
- Partitioning in place
 - Can be done in O(n) time (next slide)
- Choosing a pivot
- Ideal pivot is the median, since this splits array in half
- Computing the median of an unsorted array is O(n), but algorithm is guite complicated
- Popular heuristics:
- Use first value in array (usually not a good choice)
- Use middle value in array
- Use median of first, last, and middle values in array
- Choose a random element







- Once indices cross, partitioning is done
- If you replace blue with ≤ p and red with ≥ p, this is exactly what we need for QuickSort partitioning
- Notice that after partitioning, array is partially sorted
- Recursive calls on partitioned subarrays will sort subarrays
- No need to copy/move arrays, since we partitioned in place

15

QuickSort Analysis

- Runtime analysis (worst-case)
 - Partition can work badly, producing this:
 p
 - , ,...
 - Runtime recurrenceT(n) = T(n-1) + n
 - This can be solved to show worst-case T(n) is O(n²)
- Runtime analysis (expected-case)
 - More complex recurrence
 - Can solve to show expected T(n) is O(n log n)
- Improve constant factor by avoiding ${\tt QuickSort}$ on small sets
 - Switch to InsertionSort (for example) for sets of size, say, ≤ 9
 - Definition of *small* depends on language, machine, etc.

16

Sorting Algorithm Summary

- The ones we have discussed
 - InsertionSortSelectionSort
 - SelectionsMergeSort
- QuickSort
- Other sorting algorithms
- HeapSort (will revisit this)
- ShellSort (in text)
- BubbleSort (nice name)
- RandomSort
- RadixSort
 BinSort
- CountingSort

- Why so many?
 - Stable sorts: Insertion, Selection, Merge
 - Worst-case O(n log n):
 - Merge, Heap

 Expected O(n log n):
 - Merge, Heap, Quick
 - Best for nearly-sorted sets: Insertion
 - No extra space needed: Insertion, Selection, Heap
 - Fastest in practice: Quick
- Least data movement: Selection

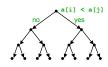
17

Lower Bound for Comparison Sorting

- Goal: Determine the minimum time *required* to sort *n* items
- Note: we want worst-case, not best-case time
 - Best-case doesn't tell us much; for example, we know Insertion Sort takes O(n) time on already-sorted input
- Want to know the worst-case time for the best possible algorithm
- But how can we prove anything about the best possible algorithm?
 - We want to find characteristics that are common to all sorting algorithms
 - Let's limit attention to comparison-based algorithms and try to count number of comparisons

Comparison Trees

- Comparison-based algorithms make decisions based on comparison of data elements
- This gives a comparison tree
- If the algorithm fails to terminate for some input, then the comparison tree is infinite
- The height of the comparison tree represents the worst-case number of comparisons for that algorithm
- Can show that any correct comparison-based algorithm must make at least n log n comparisons in the worst case



19

Lower Bound for Comparison Sorting

- Say we have a correct comparison-based algorithm
- Suppose we want to sort the elements in an array B[]
- Assume the elements of B[] are distinct
- Any permutation of the elements is initially possible
- When done, B[] is sorted
- But the algorithm could not have taken the same path in the comparison tree on different input permutations

20

Lower Bound for Comparison Sorting

- How many input permutations are possible? $n! \sim 2^{n \log n}$
- For a comparison-based sorting algorithm to be correct, it must have at least that many leaves in its comparison tree
- to have at least $n! \sim 2^{n \log n}$ leaves, it must have height at least $n \log n$ (since it is only binary branching, the number of nodes at most doubles at every depth)
- \bullet therefore its longest path must be of length at least n log n, and that it its worst-case running time