

Induction

Lecture 6 CS211 - Summer 2007

Overview

- Recursion
 - A programming strategy that solves a problem by reducing it to simpler or smaller instance(s) of the same problem
- Induction
 - A mathematical strategy for proving statements about natural numbers 0,1,2,... (or more generally, about inductively defined objects)
- Induction and recursion are very closely related

2

Defining Functions

- It is often useful to describe a function in different ways
 - Let $S: int \rightarrow int$ be the function where S(n) is the sum of the integers from 0 to n. For example
 - S(0) = 0S(3) = 0+1+2+3 = 6
 - Definition: iterative form • S(n) = 0+1+ ...+ n = $\sum_{i=0}^{n} i$

 - Recursive definition
 - S(0) = 0
 - S(n) = n + S(n-1) for n > 0
 - Another characterization: closed form

Sum of Squares

- A more complex example
 - \bullet Let SQ : int \to int be the function that gives the sum of the squares of integers from 0 to n:

$$SQ(0) = 0$$
 $SQ(3) = 02 + 12 + 22 + 32 = 14$

- Definition (iterative form): $SQ(n) = 0^2 + 1^2 + ... + n^2$
- Is there an equivalent closed-form expression?

Closed-Form Expression for SQ(n)

- Sum of integers between 0 through n was n(n+1)/2 which is a *quadratic* in n
- Inspired guess: perhaps sum of squares of integers between 0 through n is a cubic in n

- Conjecture: SQ(n) = an3+bn2+cn+d where a, b, c, d are unknown coefficients
- How can we find the values of the four unknowns?
 - Idea: Use any 4 values of n to generate 4 linear equations, and then solve

Finding Coefficients

$$SQ(n) = 0^2+1^2+...+n^2 = an^3+bn^2+cn+d$$

• Use n = 0, 1, 2, 3

 $SQ(0) = 0 = a \cdot 0 + b \cdot 0 + c \cdot 0 + d$ $= a \cdot 1 + b \cdot 1 + c \cdot 1 + d$ SQ(1) =1 SQ(2) = 5 = a.8 + b.4 + c.2 + d $SQ(3) = 14 = a \cdot 27 + b \cdot 9 + c \cdot 3 + d$

Solve these 4 equations to get a = 1/3 b = 1/2 c = 1/6 d = 0

Is the Formula Correct?

· This suggests

$$SQ(n) = 0^2 + 1^2 + ... + n^2$$

= $n^3/3 + n^2/2 + n/6$
= $n(n+1)(2n+1)/6$

- Question: Is this closed-form solution true for all n?
 - Remember, we only used n = 0,1,2,3 to determine these coefficients
 - We do not know that the closed-form expression is valid for other values of n

11

One Approach

- Try a few other values of n to see if they work.
 - Try n = 5: SQ(n) = 0+1+4+9+16+25 = 55
 - Closed-form expression: 5·6·11/6 = 55
 - Works!
- Try some more values...
- We can never prove validity of the closed-form solution for all values of n this way, since there are an infinite number of values of n

A Recursive Definition

• To solve this problem, let's express SQ(n) in a different way: $SQ(n) = \frac{0^2 + 1^2 + ... + (n-1)^2}{1 + n^2} + n^2$

The part in the box is just SQ(n-1)

• This leads to the following recursive definition

SQ(0) = 0 **←** SQ(0) = 0 $SQ(n) = SQ(n-1) + n^2$, n > 0Recursive Case Base Case

• Thus,

 $SQ(4) = SQ(3) + 4^2$ $= SQ(2) + 3^2 + 4^2$ $= SQ(1) + 2^2 + 3^2 + 4^2$ $= SQ(0) + 1^2 + 2^2 + 3^2 + 4^2$ $= 0 + 1^2 + 2^2 + 3^2 + 4^2$

Are These Two Functions Equal?

• SQ_r (r = recursive)

$$SQ_r(0) = 0$$

 $SQ_r(n) = SQ_r(n-1) + n^2, n > 0$

• SQ_c (c = closed-form)

$$SQ_c(n) = n(n+1)(2n+1)/6$$

10

Induction over Integers

- To prove that some property P(n) holds for all integers $n \ge 0$,
 - Basis: Show that P(0) is true
 - Induction Step: Assuming that P(k) is true for an unspecified integer k, show that P(k+1) is true
- Conclusion: Because we could have picked any k, we conclude that P(n) holds for all integers $n \ge 0$

Dominos

- Assume equally spaced dominos, and assume that spacing between dominos is less than domino length
- How would you argue that all dominos would fall?
- Dumb argument:
 - Domino 0 falls because we push it over
 - Domino 0 hits domino 1, therefore domino 1 falls
 Domino 1 hits domino 2, therefore domino 2 falls
 - Domino 2 hits domino 3, therefore domino 3 falls
- Is there a more compact argument we can make?

Better Argument

- Argument:
 - Domino 0 falls because we push it over (Base Case or Basis)
 - Assume that domino k falls over (Induction Hypothesis)
 - Because domino k's length is larger than inter-domino spacing, it will knock over domino k+1 (Inductive Step)
 - ${\color{red} \bullet}$ Because we could have picked any domino to be the ${\bf k}^{\text{th}}$ one, we conclude that all dominoes will fall over (Conclusion)
- This is an inductive argument
- This version is called weak induction
 - There is also *strong induction* (later)
- Not only is this argument more compact, it works for an arbitrary number of dominoes!

13

$SQ_r(n) = SQ_c(n)$ for all n?

• Define P(n) as $SQ_r(n) = SQ_c(n)$

- Assume P(k) for unspecified k, and then prove P(k+1) under this assumption

14

Proof (by Induction)

 $SQ_r(0) = 0$ $SQ_r(n) = SQ_r(n-1) + n^2, n > 0$

 $SQ_c(n) = n(n+1)(2n+1)/6$

Let P(n) be the proposition $SQ_r(n) = SQ_c(n)$. Prove $P(n) \ \forall n \ge 0$.

15

17

Another Example

Prove that $0+1+...+n = n(n+1)/2 \quad \forall n \ge 0$.

16

A Note on Base Cases

- Sometimes we are interested in showing some proposition is true for integers $\geq b$
- Intuition: we knock over domino b, and dominoes in front get knocked over; not interested in 0,1,...,(b-1)
- In general, the base case in induction does not have to be 0
- If base case is some integer b
 - Induction proves the proposition for n = b, b+1, b+2, ...
 Does not say anything about n = 0,1,...,b-1

Weak Induction: Nonzero Base Case

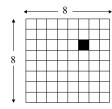
Claim: You can make any amount of postage above 8¢ with some combination of 3¢ and 5¢ stamps

What are the "Dominos"?

- In some problems, it can be tricky to determine how to set up the induction
- This is particularly true for geometric problems that can be attacked using induction

19

A Tiling Problem



- A chessboard has one square cut out of it
- Can the remaining board be tiled using tiles of the shape shown in the picture (rotation allowed)?
- Not obvious that we can use induction!

20

Proof Outline

Consider boards of size $2^n \times 2^n$ for n = 1, 2, ...

- Basis: Show that tiling is possible for 2 x 2 board
- Induction Hypothesis: Assume the $2^k \ x \ 2^k$ board can be tiled
- Inductive Step: Using I.H. show that the 2^{k+1} x 2^{k+1} board can be tiled
- Conclusion: Any $2^n \times 2^n$ board can be tiled, n = 1,2,...
 - Our chessboard (8 x 8) is a special case of this argument
 - We will have proven the 8 x 8 special case by solving a more general problem!

21

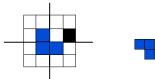
Basis

2 x 2 board

• The 2 x 2 board can be tiled regardless of which one of the four pieces has been omitted

22

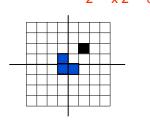
4 x 4 Case



- Divide the 4 x 4 board into four 2 x 2 sub-boards
- One of the four sub-boards has the missing piece
 - By the I.H., that sub-board can be tiled since it is a 2 x 2 board with a missing piece
- Tile the center squares of the three remaining sub-boards as shown
 - This leaves three 2 x 2 boards, each with a missing piece
 - We know these can be tiled by the Induction Hypothesis

23

2k+1 x 2k+1 case



- Divide board into four sub-boards and tile the center squares of the three complete sub-boards
- The remaining portions of the sub-boards can be tiled by the I.H. (which assumes we can tile $2^k \, x \, 2^k$ boards)

When Induction Fails

- Sometimes an inductive proof strategy for some proposition may fail
- This does not necessarily mean that the proposition is wrong
 - It may just mean that the particular inductive strategy you are using is the wrong choice
- A different induction hypothesis (or a different proof strategy altogether) may succeed

25

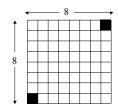
Tiling Example (Poor Strategy)

Let's try a different induction strategy

- Proposition
 - Any n x n board with one missing square can be tiled
- Problem
 - A 3 x 3 board with one missing square has 8 remaining squares, but our tile has 3 squares; tiling is impossible
- Thus, any attempt to give an inductive proof of this proposition *must fail*
- Note that this failed proof does not tell us anything about the 8x8 case

26

A Seemingly Similar Tiling Problem



- A chessboard has opposite corners cut out of it. Can the remaining board be tiled using tiles of the shape shown in the picture (rotation allowed)?
- Induction fails here. Why? (Well...for one thing, this board can't be tiled with dominos.)

27

Strong Induction

- We want to prove that some property P holds for all n
- Weak induction
 - P(0): Show that property P is true for 0
 - $P(k) \Rightarrow P(k+1)$: Show that if property P is true for k, it is true for k+1
 - Conclude that P(n) holds for all n
- Strong induction
 - P(0): Show that property P is true for 0
 - P(0) and P(1) and ... and P(k) ⇒ P(k+1): show that if P is true for numbers less than or equal to k, it is true for k+1
 - Conclude that P(n) holds for all n
- · Both proof techniques are equally powerful

28

Conclusion

- Induction is a powerful proof technique
- Recursion is a powerful programming technique
- Induction and recursion are closely related
 - We can use induction to prove correctness and complexity results about recursive programs