
Java Bootcamp
David I. Schwartz

COMS/ENGRD 211

Read Step 1 first on Page 3!
It will explain what you need to do!
Page 1

Table of Contents
Step 0 Understand the notation in this tutorial. 3
Step 1 Figure out how to do this tutorial.. 4
Step 2 How to find Java at Cornell. 6
Step 3 What is a Java application?. 7
Step 4 Java Language. 8
Step 5 Java Character Set. 9
Step 6 Java Comments and Whitespace. 10
Step 7 Java Tokens. 11
Step 8 Java Statements. 18
Step 9 Empty and Block Statements . 19
Step 10 Declaration and Assignment Statements . 20
Step 11 Introduction to Scope . 21
Step 12 Control Flow . 23
Step 13 Methods . 27
Step 14 Building A Class . 34
Step 15 Creating Objects . 37
Step 16 Storing and Accessing Objects (References) . 40
Step 17 Special reference–null . 43
Step 18 Special method–toString. 44
Step 19 Accessing an object’s members . 45
Step 20 What is static? . 48
Step 21 Aliases. 51
Step 22 Methods and objects (and aliases) . 54
Step 23 Using Java’s this . 56
Step 24 Arrays . 60
Step 25 Class Object . 67
Step 26 Java API and import . 68
Step 27 Constants: Static Import and Enumerations (enum) . 69
Step 28 Wrapper Classes . 71
Step 29 Autoboxing . 72
Step 30 Vectors. 73
Step 31 User I/O. 75
Step 32 Other things for the future…?. 76
Page 2

Java Bootcamp Step 0 Page 3/76
Step 0: Understand the notation in this tutorial.

text the stuff you need to read

code something you would enter into a program;
part of the Java language

output something that a program would report as text;
result of expression/method evaluation

value the type of something you would enter as code
e.g., name to represent any variable name

file a filename

Menu menu selection

link link, which should bring you to somewhere in this document or a website
the links tend to work best if open the document in a web browser

term an important key term, which I try to define in nearby text

Java Bootcamp Step 1 Page 4/76
Step 1: Figure out how to do this tutorial.

1.1 Background

In the past, the Java Bootcamp was taught in a large lecture hall with an instructor or
teaching assistant rattling off a blizzard of Java syntax while students’ eyes rapidly glazed
over. So, I have created this hopefully more engaging version. There may be a few rough
edges, so I hope that you will help me by providing constructive criticism.

1.2 Time?

If you are unfamiliar with Java, you will likely need more that 3 hours. Otherwise, you
might want to start with the OOP sections and refer back to previous sections.

1.3 On-line Help:

• Java 5 and JDK 1.5–explanation of these names mean effectively the same thing:
http://java.sun.com/j2se/naming_versioning_5_0.html.

• Summary of Java 5 features/changes:
http://java.sun.com/developer/technicalArticles/releases/j2se15/

• Java 5 complete release notes:
http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html

• Java tutorial: http://java.sun.com/docs/books/tutorial/
• Java API: http://java.sun.com/j2se/1.5.0/docs/api/index.html
• Data structures collection: http://www.nist.gov/dads/

1.4 Some suggestions

• Skim the sections to see what seems unfamiliar. Refer to the Table of Contents.
• If you are familiar with the basics of Java’s language, we suggest starting with Step

14 (OOP in Java).
• If all you need is a quick introduction to Java 5, see these sections: Step 13.13,

Step 24.12, Step 27, Step 28.2, Step 29, and Step 31.
• If you get stuck, try the previous section. You might need to start from the

beginning of this tutorial.
• Use companion notes, like the course books, their websites, Java’s online tutorial

at, and numerous examples posted on past CS100 Websites. Well…we can’t cram
everything about Java into this document.

• Try to do the suggested problems. If you only read the solutions, you have not
practiced enough! Programming involves practice.

http://java.sun.com/docs/books/tutorial/
http://java.sun.com/j2se/naming_versioning_5_0.html
http://java.sun.com/developer/technicalArticles/releases/j2se15/
http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html
http://java.sun.com/j2se/1.5.0/docs/api/index.html
http://www.nist.gov/dads/

Java Bootcamp Step 1 Page 5/76
1.5 Problem 1

Where are the solutions posted for the tutorial?

1.6 Problem 2

What is autoboxing? Check out the Java 5 summary or release notes to find out.

Java Bootcamp Step 2 Page 6/76
Step 2: How to find Java at Cornell.

2.1 Background

Cornell has public labs (CIT), Engineering labs (ACCEL), and departmental labs, most of
which you won’t be able to access until you affiliate with a particular department. Review
the links on the course website: http://www.cs.cornell.edu/courses/cs211 (you don’t need
the current year). See Software under the Course Info link.

Most likely you will work in a CIT lab if you don’t use your own computer. To access
course-specific software, click on Windows’s Start and select All Programs → Class
Files.

2.2 Java Environments

Use any type of Java development environment that you wish. If you think you are using
something completely off-the-wall, check your code with something more standard.

2.3 Examples and Help

Review the CS211 website (see above). In CS211, we require that students understand
how to compile and run their programs from the command line and, thus, use directly use
the JDK (Java Development Kit). You can find help on these environments by following
the links on the website.

2.4 Problem 1

Compile and run the following code (see class software in a public lab):

public class Step2 {
public static void main(String[] args) {

System.out.println("Hello, world!");
}

}

2.5 Problem 2

In the above example, replace "Hello, world!" with args[0]. Now use the
command line in a DOS window to compile and run your code. If you have never done
this kind of programming, skim applications.html, which is posted along with this
tutorial (“Companion Document”). Java’s on-line tutorial also has a brief explanation of
using command-line arguments.

To test your program, enter the following command at the DOS prompt:

> java Step2 Buh!

http://www.cs.cornell.edu/courses/cs211/

Java Bootcamp Step 3 Page 7/76
Step 3: What is a Java application?

3.1 Long Answer

Refer to Applications.html, which Step 2 mentions.

3.2 The Gist

• Except for import statements, all Java code must reside inside a class.
• Unless you want your program to run within a webpage (an applet), you need to

write an application. A Java application has a main method that starts the
program.

• Every class can have a main method.
• You need to “tell” Java which main method you wish to run when executing a

program.
• When compiling from the command-line, each file must include only one public

class. If you prefer to place multiple classes in one file, do not modify the classes
with the word public–only the class containing method main should have
public as part of the declaration.

3.3 Problem 1

Write a Java application that contains the following code in one file called
MyProgram.java:

public class MyProgram {
public static void main(String[] args) {

System.out.println(new Person(args[0],args[1]));
}

}

class Person {
private String first;
private String last;
public Person(String f, String l) {

first = f;
last = l;

}
public String toString() {

return first + " " + last;
}

}

From the command-line, compile and run the program with arguments Dimmu and
Borgir.

Java Bootcamp Step 4 Page 8/76
Step 4: Java Language

4.1 Language Analogy

• alphabet ⇔ character set
• punctuation ⇔ punctuation
• whitespace ⇔ whitespace
• words ⇔ tokens
• sentences ⇔ statements
• paragraphs ⇔ modules

4.2 What’s next?

The next few sections go over details and tricks about the Java language. I suggest that
you try the problems to see how well you know/remember a lot of the nit-picky items. If
you find yourself getting strange results, chances are you missed one of these rules.

4.3 On-line help

Java’s language basics (http://java.sun.com/docs/books/tutorial/java/nutsandbolts) nicely
reviews Java’s basics. Note that CS212 doesn’t do much with bitwise operators, which
you will see described.

4.4 Problem

Rewrite the code in BasicsDemo.java (below) to add backwards (start from 10 and end
at 1).

public class BasicsDemo {
public static void main(String[] args) {

int sum = 0;
for (int current = 1; current <= 10; current++) {

sum += current;
}
System.out.println("Sum = " + sum);

}
}

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/

Java Bootcamp Step 5 Page 9/76
Step 5: Java Character Set

5.1 Unicode and ASCII

• All characters use Unicode (www.unicode.org), not really practical for CS211. So,
you could feasibly make the assignment statement _☺_=27;.

• We will use keyboard characters (ASCII) for language.
• Will show character values in token section.
• Java is case sensitive!

5.2 Problem 1

Look up ASCII codes at http://www.asciitable.com and answer these questions:

• What is the ASCII code for BEL? (Try MATLAB’s beep function for more fun.)
• What is the ASCII code for the letter a?
• Is the ASCII value of letter A higher or lower than a?

5.3 Problem 2

What is the trick for changing the case of a letter using character arithmetic?

5.4 Submitting Your Homework in ASCII

Skim the submission format requirements in the CMS Info document on the course
website. If you still do know what we mean by ASCII text, please ask!

http://www.asciitable.com/
http://www.cs.cornell.edu/courses/cs212/2004fa/cms.html

Java Bootcamp Step 6 Page 10/76
Step 6: Java Comments and Whitespace

6.1 Java Comments

• Single line comments:
// stuff
/* stuff */

• Multiline comments:
/*
 stuff
*/

• You can nest comments.

6.2 Java Whitespace

• Spacebar, return, new line, tab.
• You can separate tokens and statements with as much whitespace as you want.
• Do not split a token!

6.3 Problem 1

Correct the following program, which should print hello:

public Class Test {
public static void ma in (String[] Args) {

// hello
/* hello
System.out.println();

}
}

Java Bootcamp Step 7 Page 11/76
Step 7: Java Tokens

7.1 Punctuation

• Statements end with semicolon! (;).
• Classes, methods, constructors, statement blocks, inner classes, initialization

blocks, and initializer lists use braces ({ }). Inner classes and initialization blocks
aren’t covered in our CS100, so don’t worry about them for now.

• Methods and expressions use parentheses (()).
• Arrays use square brackets ([]).
• Parameter lists and variable declarations use commas (,).
• String literals (strings created w/o using a constructor) use double quotes (" ").
• Character values use single quotes (' ').
• Escape characters use a backslash (\).
• What about other symbols, like + and .? Those are operators–discussed soon!

7.2 Problem 1

The following program should print integers from 0 to 10. Unfortunately, we forgot to
apply the punctuation! Please fix it.

public class Punctuation
public static void main String args

int count = 0
final int STOP = 10
while count <= STOP

System.out.println count
count++

7.3 Reserved Words

Reserved words are tokens that are reserved for the language and cannot be used to
represent any value. See textbook for comprehensive list:

• values: true false null this
• types: boolean int double char void
• control: if else for do while return switch
• modifiers: public private static final protected
• classes: new class extends implements super interface enum
• amusing: goto

Java Bootcamp Step 7 Page 12/76
7.4 Values

Also thought of constants or literals: tokens whose representation means exactly the
values expressed in their name. Java has primitive (non-object) types and reference
(object) types.

Numbers:

• integers.
We focus on int: -2147483648 ↔ 2147483647
See also long.

• doubles:
decimal point: 0.1, .1, 1., 1.0
scientific notation: 1e-6, 1.23E2

Boolean:

• false and true
• no 0 and 1 to represent truth!

Characters:

• Unicode: '\uxxxx'
• ASCII: use decimal 0–127.
• Literal representation: single quote: 'a', '1'
• No empty character ('')!
• Escape characters: \n (new line), \t (tab), and others

References:

• Java has reference values to point to objects, but you cannot directly access those
values.

• Special reference value you can use–“no object”: null
• You’ll get much more into references later in the tutorial.

7.5 Problem 1

If you mix characters and numerical values in an expression, Java promotes the expression
to a value. Since double > int > char, you can actually mix all three together.

System.out.println(' ' * 2.0); // what does this output? why?

System.out.println(true + 29); // what does this output? why?

System.out.println("Hi\nthere!") // what does this output?

System.out.println((char)97); // (type) is cast operator; output?

Why does the expression (String) 9 cause Java to vomit? How do you create a string
containing a primitive value? Hint: Use +. Actually, see next section.

Java Bootcamp Step 7 Page 13/76
7.6 Strings

Making strings:

• Java strings are not primitive values or arrays! Strings are objects in Java.
• Shortcut: use double quotes, which makes a string look like a value:

String s = "I wuv u";
• Longer way:

String s = new String("I wuv u");
• Also, see string promotion below.
• Once created, cannot change contents. See StringBuffer in API for mutable

strings.

Null string ("") is not null!

• The null string is a string object with no character values.
• Very handy for string promotion. See below.

String promotion:

• You can add any value or object to a string, which returns a string object!
System.out.println(1+""+1); // what does this output?

• How does an object become a string? toString method, which all classes inherit,
which you may implement. More later.

• Strings can’t be demoted to other types. But you can use wrapper classes. For
example, Integer.parseInt("4") evaluates to the integer 4.

Convert characters to strings and vice versa?

• You need arrays, which you haven’t seen too much, yet.
• For now, here’s a quick way (initializer list is shortcut for an array):

char[] c = {'A','B','C'}; // array of 3 chars
String s = new String(c);

Handy built-in methods!

• There are many useful string methods in the Java API. Refer to the String class.
• Number of characters in a string: length() method, e.g., s.length().
• Others: charAt, indexOf, toUpperCase, toLowerCase, toCharArray,

equals

String equality:

• Compare strings with equals method!
• Why? Strings are objects. So if you use ==, you are comparing addresses, not

contents.
• Actually == will work if you created strings with literals, but it’s an obscure rule,

so forget you heard it.
• As toString, equals is inherited by all classes. So, you can define it for other

classes.

Java Bootcamp Step 7 Page 14/76
7.7 Problem 2

Are the following statements OK? Why or why not? What do they do?

String s1 = null;
String s2 = "";
System.out.println(s1.length());
System.out.println(s2.length());

System.out.println("abc" + "123");

String s2 = "abc";
s2[1] = 'd';

String a = "abcd";
String b = new String("abcd");
System.out.println(a == b);
System.out.println(a.equals(b));

String start = "";
start = start + 1;
start = start + "\n";
start = start + 2;
System.out.println(start);

Java Bootcamp Step 7 Page 15/76
7.8 Identifiers

As long as you don’t use reserved words, you can name elements of code:

• variables
• methods
• classes

Java names:

• Name contain alphanumeric characters, underscore, and currency symbols.
• Must not start with number!
• Case sensitive!

Variables:

• Store and refer to a value.
• Can be in method (local variable), method header (formal parameter), or field

(class variable or instance variable–see static later).
• Must have declared type–Java is strongly typed! Discussed more in statements

section. For now, type name to declare.

Methods:

• See above for naming rules.
• Convention: start with lowercase character.

Classes:

• See above for naming rules.
• Convention: start with uppercase letter.

Scope:

• How and when you can access variables, methods, and classes requires discussion
of Java statements and OOP.

• This issue will appear all over the tutorial. The discussion of scope has to evolve
because there is simply too much Java to learn all at once.

7.9 Problem 1

Is the following code legal? If so, what does it do? Should you use names such as these?

public class CLASS {
public static void main(String[] Sgra) {

int INT = 10;
for (int Int=0;Int<INT;Int++)

System.out.println(Int);
}

}

Java Bootcamp Step 7 Page 16/76
7.10 Operators

Review: http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html

Basics:

• Arithmetic: +, -, *, /, % (mod), - (negation, subtraction)
• Logic: & (and), && (short-circuit and), | (or), || (short-circuit or), ! (not), ^ (xor)
• Comparison: ==, !=, <, <=, >, >=
• Conditional: ?:
• Assignment: =, +=, *=, -=, …
• Increment: --, ++
• Cast: (type)
• Member access: . (no pointer, dereferencing)
• Array access: [index]
• String concatenation: +
• Object type comparison: instanceof

Power?

• Java does not use **; ^ means XOR (exclusive OR, not a power!).

• For , use Math.pow(x,y).

Precedence:

• See http://java.sun.com/docs/books/tutorial/java/nutsandbolts/expressions.html
• Handy to remember that precedence of [] and . are highest.
• Use parentheses (()) to control the order of operation in an expression.

Associativity:

• Two main rules people run into:
- Arithmetic works left to right.
- Assignment works right to left.

• Example:
System.out.println("answer: "+1+2); // outputs answer: 12
x = y = 3; //

• Use parentheses (()) to control the order of operation in an expression.

Promotion (revised):

• Number types: double > int > char.
• Cannot mix boolean with numbers.
• Everything promotes to string with +.

xy

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/opsummary.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/expressions.html

Java Bootcamp Step 7 Page 17/76
Arithmetic:

• Consequence of ints promoting to double?
• In mixed operations, result becomes double.
• Integer division results in integer result! Not rounded–result is floored!

Casting:

• (type) expr
• arrays and inheritance: cast has lower precedence! So, use ((type) expr)

Conditional operator:

• expr ? expr1 : expr2
• Returns either expr1 or expr2
• Example:

int x = 1; int y = 2;
System.out.println(x==y? 'a' : 'b');

Increment operators (some examples):

• prefix example:
int x = 1;
int y = ++x;
System.out.println(x); // outputs 2
System.out.println(y); // outputs 2

• postfix example:
int a = 1;
int b = a++;
System.out.println(a); // outputs 2
System.out.println(b); // outputs 1

• bonkers example (way beyond scope of CS211)
int x = 1;
x = x++;
System.out.println(x); // might not be what you think :-)

7.11 Problem 2

Write a program that checks if 13 is even or odd.

Why does System.out.println(3/4) output zero?

Write a program that generates a random integer between 1 and 100, inclusive. Hint:
Math.random() returns a double in the interval [0, 1).

Write a program that converts all of the lowercase letters to uppercase without using an
array or strings. Hint: for(int count=start;count<=stop;count++).

Java Bootcamp Step 8 Page 18/76
Step 8: Java Statements

8.1 Statement Types

• empty
• block
• expression
• declaration
• assignment
• selection
• repetition
• method call
• return
• object creation

8.2 Methods and Objects

The return, method call, and object-creation statements are discussed in later steps. The
next few sections focus on the other statements.

8.3 Problem 1

Review http://java.sun.com/docs/books/tutorial/java/nutsandbolts/expressions.html.

What does the term control flow refer to?

What is a selection statement? Give an example in Java.

What is a repetition statement? Give an example in Java.

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/expressions.html

Java Bootcamp Step 9 Page 19/76
Step 9: Empty and Block Statements

9.1 Empty

The simplest form of a sentence:

• semicolon ;
• empty block: {}

These statements simply succeed without further work.

9.2 Block

• syntax: { statements }
• example

if (x == 10) {
System.out.println("Hello!");
System.out.println("x is " + x);

} else
System.out.println("Bye!");

9.3 Expression

• cannot make statements, like 1+1;
• some expression statements are legal: method call, increment, object creation
• see operators for reminders of associativity and precedence

9.4 Problem 1

Write a program that pauses. Do not use a built-in method. Hint: Use a for loop.

Java Bootcamp Step 10 Page 20/76
Step 10: Declaration and Assignment Statements

10.1 The Rules

• all variables have types (strongly typed)!
• variables may be declared only once in a block!
• all variables must have values before used!
• all variables do not have initial values in methods!
• when variables declared but not assigned in class (fields), defaults are “zero”

some tricky ones: references are null, booleans are false

10.2 Declaration Syntax

type name;
type name, …, name;

10.3 Assignment Syntax

• general:
name = expr;

• combined syntax:
type name = expr;
final type name = expr;

• more about scope? coming up!

10.4 Problem 1

What is wrong with the following code, besides the fact that I did not comment it?

public void something() {
int x = 1;
boolean y;
System.out.println(y);
System.out.println(x==y);

}

Java Bootcamp Step 11 Page 21/76
Step 11: Introduction to Scope

11.1 Blocks

• Classes, methods, control structures, and blocks of statements.
• Blocks can enclose other blocks.

11.2 Variables

• Variables declared before an enclosed block are seen and used inside the enclosed
block.

• Changes to the variable are retained while the outer block is still running.
{ int x = 2;

{ System.out.println(x); x = 3; } // output is 2
 System.out.println(x); } // output is 3

• Variable declared inside an inner block is not visible to the outer block.
{ int x = 3;

{ boolean y = true; }
 double y = 10; }

11.3 Methods

• Methods form their own blocks.
• So, variables declared inside method are local variables, meaning that their scope

is strictly in the method.
• Method formal parameters (header) also act as local variables.

11.4 Classes

• Variables declared at class level (see braces) are visible to all methods and other
variables declared at the class level. These variables are called fields.

• Actually, there’s a lot more to discuss: this, private, public, protected, and
static. Coming up!

11.5 Why nested blocks?

You can reuse the same variable name for loops:

void doStuff() {
for (int i = 0 ; i < 10 ; i++) { /* stuff */ }
for (char i = 'a'; i <= 'z'; i++) { /* stuff */ }

}

Note that reusing a variable with a different type is usually bad style.

Java Bootcamp Step 11 Page 22/76
11.6 Problem 1

What does the following code output?

public class Scope {
 public static void main(String[] args) {
 int x = 1;
 System.out.println("S1 for x: "+x);

{
System.out.println("S2 for x (before changing): "+x);

 x = x + 1;
 System.out.println("S2 for x (after changing): "+x);
 int y = 3;

{ System.out.println("S3: "+(x + y)); }
}

 String y = "yes, this is legal";
 System.out.println("S1: "+y);
 }
}

11.7 Problem 2

What does the following program output? Note that when creating an object (new
Data()), Java first assigns the fields (x, y), then performs the constructor (Data()).
Hint: The fields are in a block, which means the rules above still apply!

class Data {
int x;
int y = x;
Data() {

System.out.println(x);
x = 1;
System.out.println(y);

}
}
public class Test {

public static void main(String[] args) {
new Data();

}
}

Java Bootcamp Step 12 Page 23/76
Step 12: Control Flow

12.1 Execution

Execution in Java (and many other languages) is top-down, left-to-right. You can alter this
flow with a control-flow statement, like while and if. Of course, the Java tutorial has a
nice summary:
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/flowsummary.html

12.2 Labeled Statements

In general, we’re going to avoid these statements. Usually, you can avoid jumping to
another statement (in the spirit of goto) with appropriate conditions in a selection or
repetition statement.

12.3 Break Statement

Just as you can jump to another statement, you break execution to the statement that made
the call to a particular point in code. Usually, people want to break out of a loop or if-
statement. We’re also going to avoid using break when possible. However, you will see a
good break in the switch statement.

12.4 Selection Statements

Java has three kinds of selection statements: if-else, switch, and try-catch-
finally. Since exception handling is covered later in CS211, we will cover only if-
else and switch statements here.

12.5 if Statement

if (booleanexpression)
block

if (booleanexpression)
block

else
block

if (booleanexpression)
block

else if (booleanexpression)
block

.

.

.
else

block

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/flowsummary.html

Java Bootcamp Step 12 Page 24/76
12.6 switch Statement

If your test condition is int, short, char, byte, or an enum type (Step 27) there is a
cool way to express a selection statement if you can identify the possible values of the
condition. For example, suppose that a variable x might have three values: 10, 20, and 30.
Instead of saying

if (x == 10)
do_something;

else if (x==20)
do_something;

else if (x==30)
do_something;

else do_something;

Each of these three constants can be used as cases in a switch on x:

switch(x) {
case 10:

do_something;
break;

case 20:
do_something;
break;

case 30:
do_something;
break;

default:
do_something;

}

The general syntax of switch is as follows:

switch(expr) {
case constant1:

statements
break;

case constant2:
statements
break;

…
default:

statements
 }

Java has a nitpicking requirement though: the constants must be known at compile-time,
which means using literal values or constants declared with final. So, no variables,
because they’re assigned at run-time.

Java Bootcamp Step 12 Page 25/76
12.7 Problems

Write a program that generates a random integer between 0 and 10, inclusive. Report
whether the number is even or odd.

Write a program that performs a logical and operation without actually using the and
operators. So, assign two boolean variables and then test then using if statements.

Suppose that a variable test might be assigned to one of these characters: 'a', 'b', 'c',
or 'd'. Use a switch statement to do the following:

• If test is 'a', the program tells the user "You did great!".
• If test is 'b', the program tells the user "You did well!".
• If test is 'c', the program tells the user "You passed!".
• If test is 'd', the program tells the user "Well, you didn’t fail!".
• Otherwise, the program tells the user "Mission Control, we’ve got

problems".

12.8 Repetition Statements

There are three general structures: while, do-while, for.

while syntax:

while (conditionalexpression)
block

do-while syntax:

do
block

while(conditionalexpression);

for-statement:

for (initializations ; checks ; increment_decrements)
block

for-each statement–will show later in arrays (Step 24) and Vectors (Step 30):

for (object : collection)
block

for (int : array)
block

Java Bootcamp Step 12 Page 26/76
12.9 Repetition Examples

int i = 0;
while (i < 5) {

System.out.println(i);
i++;

}
for (int i = 0; i < 5 ; i++)

System.out.println(i);
for (int i = 10; i < 100 ; i=i+10)

System.out.println(i);

12.10 Problem 1

Write a program that prints the following grid of characters without using an array:

a n
b o
. .
. .
. .
m z

Write the program with for and then with while.

12.11 Blocks in Control Flow and Scope Reminders

Note how I use block for the body of each statement. The block can be empty, one
statement, or multiple statements:

• The empty case can be an empty statement or empty block.
• The single statement does not require braces.
• The multiple statements do require braces.

Because the bodies of the control statements are indeed blocks, you can indeed declare
variables inside those blocks.

• Since those blocks are inner blocks, those declared variables must be visible only
in those inner blocks.

• For the for statement, the initializations can also be newly declared variables.
• For repetition statements, each time the body repeats, the variables declared inside

the body are simply re-declared without any problem.

If you intend for a variable to be seen from outside the control structure, you should
declare that variable before the control statement.

12.12 Problem 2

int j = 0;
for (int i = 0 ; i + j < 10 ; i++, j++)

;
System.out.println(___) ; // can you print the value of i? j?

Java Bootcamp Step 13 Page 27/76
Step 13: Methods

13.1 Where do they go?

• Inside a class. There are no “stand-alone” methods.
• You can write methods in any order in a class without having to use “function

prototypes.”
• Each class can have one main method. When running a program, you indicate

which class’s main method you wish to use. Refer to the beginning of the tutorial
for more discussion.

13.2 Method Syntax

Syntax:

modifiers returntype name(params) stuff
block

modifiers:

• privacy: private, public, protected, package (see OOP)
• static or non-static

returntype:

• must be valid type: class or primitive
• may be void (no return value)

name:

• must be valid Java identifier
• usually start with lowercase letter

params:

• arguments to the method
• must be declared
• for methods with no parameters, use just (). For example, int test() {code}.
• you may supply a variable amount of parameters with syntax type … var. The

ellipsis (…) is indeed part of the syntax! See Step 13.13.

stuff:

• methods can throw exceptions, which is something you’ll learn in CS211.
• there are other “things” you can put here, but we don’t usually discuss them in

CS211.

Java Bootcamp Step 13 Page 28/76
13.3 Problem 1: Random Integers

Method to generate a random integer:

public static int randInt(int low, int high) {
if (low > high) {

System.out.println("myRand Failure!");
 System.exit(0);
}
return (int) (Math.random()*(high-low+1)) + (int) low;

}

Now, use that method:

public class NumberGuess {

public static void main(String[] args) {

final int LOW = Integer.parseInt(args[0]);
final int HIGH = Integer.parseInt(args[1]);

// insert statement to find random integer between LOW and HIGH,
// inclusive

}

// put randInt method here
}

13.4 Scope

If you are jumping around the tutorial, check out the other Scope sections. There is some
new material about methods, below. You will see even more when you reach objects and
classes:

• static methods cannot access non-static fields or methods (explained better
when we hit objects)

• each method treated as an outer block (including params): so, all params and
declared local variables inside the method are visible only inside the method

• methods must be in a class, which forms a block that encloses the method blocks:
so, the methods inside a class all share the same fields

13.5 Static vs. Non-static and OOP (more later!)

The downside to teaching methods before objects is that some students prefer to make all
methods static thereafter. When working with classes and objects, your methods will
usually be instance methods, meaning that they are not modified as static. static
methods are good style when you have methods that should influence all objects created
from a class, or the methods would require nonsensical objects. Assuming you’re actually
reading this portion before OOP, I’ll repeat this discussion in more detail when you learn
how to access a method from an object or class.

Java Bootcamp Step 13 Page 29/76
13.6 Problem 2

Trace the following code. Does it run? Why or why not?

public class Methods1 {

public static void test3() {
System.out.println("test3");

}

public static void main (String[] args) {
test1();
test2();
test3();
test4();

}

public static void test2() {
System.out.println("test2");

}

public static void test1() {
System.out.println("test1");

 }

 public void test4() {
System.out.println("Can you make this print?");

 }

}

13.7 Parameters

Java passes variables by value. So, Java passes the values of the actual arguments to the
formal arguments. The variables cannot be passed.

public class Params {
public static void main(String[] args) {

int x = 1;
change(x);
System.out.println(x); // output is 1

}
public static change(int x) {

x = 2;
System.out.println(x); // output is 2

}
}

You can also determine that the value of x in method main doesn’t change based on the
scope of x. Method change has its own local variable x. There is no conflict with main’s
x, because both main and change are independent blocks inside the outer block of
Params.

Java Bootcamp Step 13 Page 30/76
13.8 Return Type and Values

Return types:

• Java methods must have a return type.
• The types may be any valid type (primitive, object).
• If you prefer not to return anything, you must give a return type of void.

return statements:

• Can written anywhere in a method body.
• void methods are allowed to have a return statement (with no return expression)

anywhere in the method. Use return;.
• Java passes the value of the return expression back to the code that made method

call. So, the code that makes the method call (e.g., Math.sqrt(4)), gets replaced
by the returned value (2).

13.9 Problem 3

What does the following code output?

public class Methods2 {
public static void main (String[] args) {

System.out.println(and(true,false));
boolean t1 = nand(true,false);
boolean t2 = xor(true,false);
System.out.println(and(t1,t2));

}

// Return short-circuiting AND of t1,t2:
public static boolean and(boolean t1, boolean t2) {

return t1 && t2;
}

 // Return exclusive OR of t1,t2:
 public static boolean xor(boolean t1, boolean t2) {

return t1 != t2;
 }

 // Return NOT-AND of t1,t2:
 public static boolean nand(boolean t1, boolean t2) {

return !(t1 & t2);
}

}

Java Bootcamp Step 13 Page 31/76
13.10 Problem 4

Trace the following code. What does the program output? Which method (search1 or
search2) is more reusable (and thus, arguably better style)?

public class LinearSearch {
public static void main (String[] args) {

int[] x = {1, 4, 5, -1}; // shortcut to create 1D array of values
search1(x,-1);
System.out.println(search2(x,-1));
System.out.println(search2(x,0));

}

// linear search for target in data x, return early if found:
public static void search1(int[] x, int target) {

 for (int i = 0; i < x.length; i++)
 if (x[i] == target) {
 System.out.println("Success!");

 return;
 }
 System.out.println("Fail!");

 }

// linear search for target in data x,
// return true if found, else false:

 public static boolean search2(int[] x, int target) {
for (int i = 0; i < x.length; i++)

if (x[i] == target)
return true;

return false;
}

}

13.11 Method Overloading

Method overloading:

• Write more than one method with the same name in same class.
• Helps with creating too many silly names, like search1, search2, ….
• Common example: System.out.println. See PrintStream in API.

Rules:

• You may change order of arguments, types, number of params and combinations
of these changes.

• These two changes do not constitute overloading:
- changing just the return type
- changing just the parameter names

Java Bootcamp Step 13 Page 32/76
13.12 Problem 5

Write two more myRand methods:

• One to generate a random bit.
• Another to generate a random character.

Judicious use of myRand for integers can help reduce the amount of code you write.

public class Overloading {
public static void main(String[] args) {

System.out.println("int: "+myRand(1,10));
System.out.println("bit: "+myRand());
System.out.println("char: "+myRand('a','z'));

}

// Return random int, low <= high:
 public static int myRand(int low, int high) {

if (low > high) {
 System.out.println("myRand Failure!");
 System.exit(0);
 }
 return (int) (Math.random()*(high-low+1)) + (int) low;

 }

// Generate random bit:

// Generate random character:

}

Java Bootcamp Step 13 Page 33/76
13.13 Problem 6: Variable Arguments

Java 5 introduced variable arguments using the syntax type … var. So, you can call a
method with 0 to many arguments without having to specify new methods using
overloading. Refer to the following example:

public class Varargs {
public static void main(String[] args) {

test(1, 2, 3);
}

public static void test(int ... x) {
for (int i = 0; i < x.length; i++)

System.out.println(x[i]);
}

}

What does the above example output? Write another method test2 that accepts multiple
Strings. Method test2 will return how many of the inputs are equivalent to
"Metroid".

Using Object and other reference types can help you to create very generic code. You
will see a review of Object throughout later sections.

13.14 The Stack

• Each time you call a method, a portion of computer memory is set aside to hold the
parameters, local variables, and “administrative information” for that method.

• The most recent method’s memory goes on top of the previously called method.
• Eventually you reach the last method, which executes.
• The stack is literally a stack of each method’s portion of memory.

13.15 Recursion

A Java method can call itself. CS211 will go over this notion in great detail in the first
couple of weeks of classes.

The notion of the stack is very handy in keeping track of which method call is happening,
especially when a method calls itself. At some point the method needs to know when to
stop calling itself.

13.16 Advanced Problem

You can skip this problem if you’ve never tried recursion.

Write a method called sum that finds the sum of each number less than or equal to the a
supplied number. For example, sum(5) = 5 + 4 + 3 + 2 + 1 = 15.

Java Bootcamp Step 14 Page 34/76
Step 14: Building A Class

14.1 Should you do this section?

This entire section provides a summary of the concepts of creating classes for OOP. You
can get a quick reminder of what you should already know. If you are very skilled at OOP,
skip ahead to Step 14.5 and then to Step 15, which focus more on Java syntax.

14.2 ADTs

Abstract Data Type:

• primitive and built-in types don’t anticipate all the modules we might encounter
• ADT: type of thing with associated data and actions
• Use ADT to form customized types

Classes and objects?

• Classes implement ADTs
• Classes provide code to create and use objects. Think of classes as user-defined

types. For example, class String.
• Objects are unique instances of a class. Think of objects as specific values that

have the type of the class from which they were created. For example,
String s = new String("abc");

14.3 Designing a Class

Find nouns and verbs in problem:

• verbs become either
- operators
- methods

• nouns become either
- classes (code used to make objects)
- fields (variables in classes)
- parameters (variable in methods)
- local variables (in methods)
- constants (known values like numbers, chars, booleans, enums)

Elements of class (specification–a blueprint–of behaviors and actions of an entity):

• fields: data, properties, states, attributes of a thing
• methods: actions done by/on/for a thing
• constructors: how is the thing made

Will see these terms again in subsequent sections.

Java Bootcamp Step 14 Page 35/76
14.4 Design By Abstraction

Abstraction:

• Try to create general structures that hide nitty-gritty details.
• Helps a programmer deal with more English-like code, making it easier to

program.
• Use named constants:

- Rather than using specific values inside the body of a block, define constants
as fields or local variables that store those values.

• Use methods calling other methods:
- The “early” methods (first in the stack) can have really high-level sounding

names.
- The “later” methods (uppermost in the stack) can have very detailed, low-level

code.
• Use encapsulation (has-a relationships):

- If a thing has a something, then that something belongs in the class (a member)
- The class encapsulates states and behaviors.
- Provides a mechanism to “bury” things away in another class.

• Use information hiding:
- Determine how an object should communicate with other code.
- Make high-level, public methods to communicate with the code.
- Make all other class members private.

Java rules for privacy modifiers:

• private member cannot be accessed by a class different from the class in which
the private member is defined.

• public members can be accessed by any class.
• package (blank) visibility. Acts as public when not using packages.
• protected visibility relates to inheritance, which means we’ll deal with it later.

Style for privacy:

• Make fields private when possible. For inheritance, private fields are
irritating, so we generally make them protected.

• Utility methods (methods used only by other methods inside a classes) should be
private. No need for another class to see how you hacked together a weird
solution.

• Setters, getters, and other accessors should be public, so that you can use your
objects.

Static vs. Non-Static Members:

• Make a member static if you wish to access a member without creating an
object (because that member should influence or be shared by all objects created
from a class).

• Will discuss more later when you’ve reviewed how to access an object’s members.

Java Bootcamp Step 14 Page 36/76
14.5 Overall Structure

In English:

• classes contain members and constructors
• constructor is essentially a method that makes an object and returns the object’s

location in memory (reference)
• members are fields and methods (and other things you’ll learn about in CS211)

In code:

modifiers class name stuff {
fields
constructors
methods
morestuff

}

14.6 Problems

What does the following program output? How would you create another Person with
the name "Harlan Ellison"? How would you modify class Person to include a
middle name (don’t bother inheritance for now–CS211 will cover that later)?

public class Glance {

public static void main(String[] args) {
Person p = new Person("Dimmu");
p.setLastName("Borgir");
System.out.println(p);

 }

}

class Person {

private String firstName;
private String lastName;

public Person(String fn) {
 firstName=fn;
 }

public void setLastName(String ln) {
 lastName=ln;
 }

public String toString() {
 return firstName+" "+lastName;

}

}

Java Bootcamp Step 15 Page 37/76
Step 15: Creating Objects

15.1 Where are we?

To write program:

• Form the ADTs: You need to determine the composite “things” you need to model,
including their properties and actions/behavior.

• Implement the ADTs by writing the code for the classes.
• Write code that uses the classes: Make objects (specific instances of classes):

So, we need a way to make objects.

15.2 Constructor Syntax

modifiers Classname(params)
block

• Constructors resemble methods, but:
- Constructors have same as class. (Actually, a method could have the same

name as a class, but you end up with strange looking code.)
- Constructors have no specified return type: they do in fact return the address of

the object that they create.
• Constructors are usually public so that another class can make objects.

Examples:

public Person(String n) {
name = n;

}

Ways to call a constructor:

new Person("Shagrath");

Person p;
p = new Person("Horgh");

Person p = new Person("Dani");

15.3 Problem 1

Write a class Complex that represents a complex number ADT. Include an add method.

Java Bootcamp Step 15 Page 38/76
15.4 Constructor Rules: No Inheritance

Assuming you aren’t worried about inheritance:

• Classes can have more than one constructor
- same idea as method overloading
- number and types of arguments must change
- provides multiple ways to make the same kind of object

• Constructors usually set field values.
• Constructors can call another constructor with this(…) as the first statement in

the constructor. Handy for reducing the number of variable assignments if another
constructor already does that work.

• Default, or empty, constructor:
- If you do not provide a constructor, Java automatically provide the empty.
- Empty constructor syntax: public Classname() {}.
- If you provide any constructor, Java does not give you the empty constructor!

15.5 Constructor Rules: Inheritance

This stuff will show up later in CS211. You can skip for now. But, if you are curious…

• The first statement in a constructor must be super(…) or this(…).
- If it’s this(…), then the last constructor in the chain must have as its first

statement super(…).
- If there is no super(…), Java will automatically call super() (no

arguments).
• The super(…) calls the immediate superclass constructor.

- You cannot say super.super.….
- If Java is forced to call the default super(), you had better make sure that the

superclass has an empty constructor.

Order of construction when making an object:

• Set all fields to default values of “zero” (all classes!).
• Invoke each constructor without executing the bodies:

- Start with the first constructor you call.
- Follow the chain of calls to this(…) and super(…) all the way to class
Object.

• Working top-down, then left-to-right, assign the fields if any assignment is
specified.

• Execute the body of the code in the uppermost constructor.
• Go to the next highest class in the hierarchy and repeat the process.

Java Bootcamp Step 15 Page 39/76
15.6 Problems

Write a Java program that creates two Complex numbers. In the next section, you will
learn the code to add them.

Write a Java program that creates a Rectangle object. In class Rectangle, there should
be two constructors:

• Use four fields for the sides.
• Rectangle(int s1, int s2, int s3, int s4). If you want to apply

rudimentary error checking, compare the sides and call System.exit(0) for
illegal inputs.

• Rectangle(int s1, int s2). Call this(s1, s2, s1, s2) instead of
writing all four assignment statements.

15.7 Problem 2: Really Bonkers (Not Recommended)

I don’t recommend that you try to trace this code. In fact, stop looking at it. Just skip ahead
if you don’t want to risk losing your mind. OK, you asked for it:

public class Shadowing {
public static void main(String[] args) {
A a = new B();
a.test4();
}

}
class A {

public int x;
public A() { test1(); test2(); test3(); }
private void test1() { System.out.println(x); }
public void test2() { System.out.println(x); }
public void test3() { System.out.println(x); }
public static void test4() { System.out.println("Hi"); }

}
class B extends A {

public boolean x = true;
private void test1() { System.out.println(x); }
public void test3() { System.out.println(x); }
public static void test4() { System.out.println("Bye!"); }

}

Java Bootcamp Step 16 Page 40/76
Step 16: Storing and Accessing Objects (References)

16.1 Where are we?

• You can write a class by modeling a thing’s data and actions.
• The class provides the code from which you build and use unique objects.
• You need to figure ways to build objects with constructors.
• A constructor returns a reference to the newly created object.

Remaining questions:

• What’s a reference?
• How to access an object with the reference?

16.2 What’s a reference?

Short answer:

• Reference (or reference value): the address of an object, which is indeed a value.
• References are returned from constructor calls.

Example:

• Run the following code:
public class RefTest {

public static void main(String[] args) {
System.out.println(new Person());

}
}
class Person { }

• Java will output a strange looking value, like Person@092abc.

What happened?

• new Person() creates an object of type Person.
- class Person has the empty constructor because you didn’t provide one.

• The return value of the constructor call is the address of the Person object that
you created.

• There is a “secret” method in Java that has a default behavior, which returns the
reference value as a string.

- The method is toString, which is inherited from class Object. All classes
extend Object.

- Refer to the API on toString’s default behavior. It’s actually not guaranteed
to be the address, but for our JVM, it is.

- You will usually override toString because of this weirdness.

Java Bootcamp Step 16 Page 41/76
16.3 Comparing Primitive and Reference Values

Primitive types:

• When you say int x; x = 1;,
- Java allocates memory to an integer.
- Java adds the association of x and its address in a table somewhere else in

memory.
- For the assignment, Java looks up the address of x and then puts the value of 1

there.
• The idea is that all variables have a specific address, allocated memory, and

possibly a value.
• Refer to the stack from methods. Each method call allocates memory because of

the variables inside the methods.

Object types:

• When you say Person p;,
- Java allocates a small amount of space to hold an address value, but not the

entire object. In fact, Java has not created an object yet!
- The variable p has a location in memory. When you create an object and copy

its address to store in p’s location, p then refers to the object.
• When you say p = new Person();,

- Java creates an object.
- Java allocates enough memory to hold the object in another location called the

heap. This memory holds instance variables and administrative information.
- The constructor returns the address of the object, which is stored in p’s portion

of memory. The object is not stored in p!
• So, there are two portions of memory:

- p, which has it’s own location (local variable, parameter, field), which holds an
address of an object.

- the object, which resides somewhere else in memory (the heap).
• Java does not allow you to change a reference value.

- You can still make and change objects, but while an object’s reference is
“alive,” you cannot change the value itself.

- C/C++ people might be disappointed–what Java is effectively disallowing is
pointer arithmetic.

Java Bootcamp Step 16 Page 42/76
16.4 Picture

Suppose you have a method with the following code:

int x = 1;
Person p = new Person();

Refer to the figure below. Both x and p are local variables that are allocated on the stack.
The object created from class Person has space allocated on the heap.

16.5 Problem 1

Review this code and answer the questions that follow:

public void m1() {
Person p = new Person();
Person q = new Person();
// before
q = p;
// after

}

At the point where the code says // before, do p and q refer to the same object? Why or
why not?

At the point where the code says // after, do p and q refer to the same object? Why or
why not?

You’ll see me repeat similar code in the upcoming section on aliases.

The Stack

1

The Heap

x

p abc123

abc123

Java Bootcamp Step 17 Page 43/76
Step 17: Special reference–null

17.1 What happens if you have no object?

Two important Java rules:

• You cannot use variable if it doesn’t have a value.
- Local variables do not receive default variables!
- Sometimes you have to provide dummy or initial values.

• Fields always have defaults of “zero.”

So, what is the “zero” value for a reference variable? It can’t be a primitive value, like 0!
Instead, Java has null, which means “no object.” You could also think of it as “address 0,
which has no object.”

17.2 Example

public class TestNull {
public static void main(String[] args) {

Person p = null;
System.out.println(p);
Person q = new Person();
q = p; // q now refers to no object

}
}

17.3 Problem 1

What does the following code output? Why?

class Person {
private String name;
public Person() {

System.out.println(name);
}

}
public class TestNull2 {

public static void main(String[] args) {
new Person();

}
}

Java Bootcamp Step 18 Page 44/76
Step 18: Special method–toString

18.1 Why bother?

Reference values are irritating! It is very handy to be able to “print an object.” So, Java
provides a built-in method called toString, which all classes inherit from class Object.
toString will “stringify” an object. From before, the default behavior is usually
returning the object’s address as a string.

To make toString useful, your classes should override the default behavior.

• Write a toString method with the exact same header that toString has in
Object:
public String toString()

• Give a body that returns a string, which you can define.

Object has other methods, like equals, that you will often override. In fact, when
extending any class, you will often override methods, not just those in Object.

18.2 Example

This program outputs Slim Shady instead of something weird, like Person@abc123:

class Person {
private String name;
public Person(String n) {

name = n;
}
public String toString() {

return "My name is "+name;
}

}
public class PersonTest {

public static void main(String[] args) {
Person p = new Person("Slim Shady");
System.out.println(p); // isn’t this cool?

}
}

Remember that toString only returns a string and does not “print the object!” Above,
the println method forces the stringification and the prints the result. In general, you
can actually force toString to stringify an object with string promotion:

Person p = new Person();
String s = "" + p;

18.3 Problem 1

Write a useful toString method for class Complex. Hint: Consider real and imaginary
components. Sometimes the imaginary component with be negative.

Java Bootcamp Step 19 Page 45/76
Step 19: Accessing an object’s members

19.1 Where are we?

So far,

• You can write a class.
- A class has fields, constructors, and methods.
- There’s other stuff you will eventually see in CS211.

• You can create objects using constructors in a classes.
- Constructor returns reference to newly created object.
- You can store addresses of newly created objects in reference variables.
- You cannot store entire object in a variable!

Well, how you access the members of an object?

19.2 Member Access

Encapsulation reminder:

• has-a relationship.
• State (fields): An object might have a name, an age, ….
• Behavior (methods): An object might have a way to report its age, might tell you

who its parents are, …,

So, we need a way to say “object’s something” or “object has-a something.”

• Java uses the dot (.) operator to get to the “something.”
• Syntax:

reference_variable.member
constructor_call.member

• You can shorten these two to just ref.member.
• There’s a 3rd syntax (Classname.member), which requires static. And yet

again, I want to delay formal discussion. But it’s coming up really soon!

The member must be public (or accessible within the scope) for the dot to work!

19.3 Examples

Practice accessing an object’s field. Below, I’m breaking choosing clarity over style:

class Person { public int age; }
public class TestDot {

public static void main(String[] args) {
Person p1 = new Person();
System.out.println(p1.age); // outputs 0
System.out.println(new Person().age); // outputs 0

}
}

Java Bootcamp Step 19 Page 46/76
Accessing a method is very similar because of the ref.member syntax:

class Person {
private int age;
public Person(int a) { age = a; }
public int getAge() { return age; }

}
public class TestDot {

public static void main(String[] args) {
Person p = new Person(50);
System.out.println(p.getAge()); // outputs 50

}
}

19.4 Objects are unique (reminder)

Refer to the example, above. If you say ,

Person p = new Person(10);
Person q = new Person(20);

the objects the p and q refer are different. There are two entirely different addresses.
However, the code used is identical. Why?

• Objects are created from a class.
• The class provides the blueprint (the code) used to “stamp out” an object.
• When calling an object’s members,

- Java uses the code from the class to see how to process the member.
- But, the specific values Java uses come from the specific object.

So, both p and q have getAge methods, but each call to getAge will access different
values of the field age:

System.out.println(p.getAge());
System.out.println(p.getAge());

If you want to make things more interesting,

Person p = new Person(20);
Person q = new Person(20);

Both objects are still different. You just happen to have p’s age be 20 and q’s age be 20.
After all, there certainly many people in the world who happen to have the same age. And
they are not all the same person!

Java Bootcamp Step 19 Page 47/76
19.5 Changing an object’s fields

Generally, fields should be private to prevent access, which is a consequence of maintain
information hiding. However, you should at least see a small example:

class Data {
public int x;
public int y=20;
private int z;

}

public class TestPublic {
public static void main(String[] args) {

Data d = new Data();
System.out.println(d.x);
d.x = 10;
System.out.println(d.x);

}
}

You should get 0 and 10 as output. Why 0 on the first output? Recall the fields always
have a default of “zero” unless you initialize their values directly in the class.

19.6 Privacy: A Nitpicking Detail

Now and then you’ll see code that looks as follows…I’ve extracted a bit of Complex:

private double r, i;
public Complex add(Complex c) {

return new Complex (r+c.r , i+c.i);
}

How could I say c.r and c.i, though r and i are private? Well, c is type Complex, so
as far as Java is concerned, c and the current object are allowed to see each other’s
members. Yes, it’s kind of kinky.

19.7 Problem 1

In the above example, try to access and change d’s y and z fields. Follow the same order
of output statements:

• Why does d.y output as 20 before you change it?
• Why does your program not allow you to access d.z?

Rewrite Data such that it has no public fields, but you can still access and change its
fields.

Expand class Person to include a last name, first name, and methods to access those
names.

Write a program that adds two complex numbers together. Report the output.

Java Bootcamp Step 20 Page 48/76
Step 20: What is static?

20.1 Mystery revealed!

Not everything is unique!

• Sometimes objects share the same data, e.g., students with the graduation year,
population all living in the same place, and many other examples.

• Sometimes a member doesn’t make sense belonging to an object: Math.PI. You
could make a new Math() object, but why? In this case, you could say that PI is
shared by “everything,” which improves the case to make it static.

When fields are shared (modified as static), then you need a way to access the fields
without worrying about objects. So, we’ll need static methods. Note that people who
use language with global values tend to like static, because it allows for member access
without objects.

20.2 Syntax and Rules

Syntax:

classname.member

Rules:

• The member must still satisfy scope rules. So, if a field is private static, an
outside class still cannot access/see the field!

• You can still access a static member via references. What may seem weird (but
shouldn’t) is that once you change an object’s static field via a reference, all the
objects will be that same field value. If you are confused, try Step 20.5.

Terminology:

• class variable/ method: a static field/method
• instance variable/method: a non-static field/method

20.3 Example

class Person {
public static final String fate1 = "death";
public static final String fate2 = "taxes";
private String name;
...

}

In a method somewhere, you can say

System.out.println(Person.fate1);

Java Bootcamp Step 20 Page 49/76
20.4 static and other modifiers

Why do I make the fields public and final? (see next page)

Making a field static because it is shared makes sense. Since it’s shared, you might as
well make it easy to access. However, easy access can be disastrous. So, the field is also
final. The triple modification of public static final provides the closest
representation of a global constant in Java. Sometimes people prefer private static,
which might remove the need for final.

20.5 Problem 1

Demonstration of static’s syntax and its danger…what does the following code do to all
CUStudents?

class CUStudent {
public static String location;

}

public class TestStatic {
public static void main(String[] args) {

// All CUStudents will now live in Ithaca:
CUStudent.location = "Ithaca";

// Let’s check a CUStudent’s location:
CUStudent c1 = new CUStudent();
System.out.println(c1.location);

// Let’s demonstrate the syntax and danger of static...
// An object can access a static member if the member is
// in the scope:
CUStudent c2 = new CUStudent();
c2.location = "Timbuktu";

// Check what happened to all students:
System.out.println(c1.location);
System.out.println(CUStudent.location);

}
}

Java Bootcamp Step 20 Page 50/76
20.6 Problem 2

Special geeky problem: why did Java pick the name “static” for static?

Why is the main method modified as static?

20.7 Problem 3

What’s wrong with the following code?

public class TestMain {
public int x;
public static void main(String[] args) {

System.out.println(x);
}

}

20.8 Problem 4

Trace the following code. What is special about the Student constructor? (There is an
interesting “trick” that I am using.) What is the output?

class Student {
private String name;
private static int count;
public static int currentYear;
public static final int GRADYEAR = 2005;
public Student(String name) {

this.name=name;
count++;

}
public static int getCount() { return count; }

}

public class StaticTest2 {
public static void main(String[] args) {

System.out.println(Student.GRADYEAR);
Student s1 = new Student("Dani");
Student s2 = new Student("Shagrath");
Student.currentYear = 2001;
System.out.println(s2.currentYear);
System.out.println(Student.getCount());

}
}

Java Bootcamp Step 21 Page 51/76
Step 21: Aliases

21.1 Demonstration

What happens when you do run this code?

class Person {
public int x;
public Person(int n) { x=n; }
public String toString() { return "#"+x; }

}

public class TestPerson {
public static void main(String[] args) {

Person p = new Person(1);
Person q = new Person(2);

System.out.println(p); // output: #1
System.out.println(q); // output: #2

p = q;

System.out.println(p); // output: #2
System.out.println(q); // output: #2

}
}

Why does Java use q’s toString and not p’s toString after you say p=q? The
statement p = q forges an alias between p and q. An alias is another name for the same
thing. So, p becomes another name for q. See the next section for an explanation of how
the alias is formed.

21.2 Relevant rules

There are some interesting consequences of the following rules:

• Java variables must obey scope.
• Java is strongly typed.
• Java allows to copy variable values to other variables.
• You store address of object in a variable, not the entire object.

Java Bootcamp Step 21 Page 52/76
So, to say p=q,

• Both variables must be visible to each other, which they are, because they are local
variables in the same method block.

• Both references must refer to the same type of object. Actually, p must be
supertype or same type as q. We’ll be reviewing inheritance later in CS211.

• p is the left side of an assignment, which means it will get the value of the
expression on the right side of the assignment.

• q stores an address value, which is copied into p.

Since p gets the value of q, p must now point to the same object that q does! See below:

Consequences:

• If you say p.x = 10, q.x is now 10, because both variables refer to the same
object.

• The object that p originally referred to is now toast. Why?
- That object was created in the current method and associated only with p.

Since p has been reassigned, there is no connection (via a reference) to that
original object.

- To retain a connection to p’s original object, you would need to insert a
statement before p=q, like Person tmp = p.

Person object
in Heap

q

p abc123

abc123

The Stack

Java Bootcamp Step 21 Page 53/76
21.3 Problem 1

What does the following code output?

class Person {
private String name;
public Person(String n) {

name=n;
}
public String toString() {

return name;
}
public void setName(String n) {

name = n;
}

}

public class AliasTest {
public static void main(String[] args) {

Person boss;
Person p1 = new Person("A");
Person p2 = new Person("B");
boss = p1;
p2 = boss;
p2.setName("C");
System.out.println(p1);
System.out.println(p2);

}
}

21.4 Problem 2

Suppose that you have three Persons, each with a different age. Write a program that
figures out which person is the oldest.

Java Bootcamp Step 22 Page 54/76
Step 22: Methods and objects (and aliases)

22.1 Problem 1: Scope revisited (yet again)

Review the following code and try to figure out the output:

public class Pass1 {
public static void main(String[] args) {

Person p = new Person();
p.name = "Dimmu";
change(p);
System.out.println(p);

}
public static void change(Person p) {

p.name = "Borgir";
p = null;

}
}
class Person {

public String name;
public String toString() { return name; }

}

If you got Borgir instead of null, congratulations! If not, read below and then try again.

22.2 The rules

Again, I try to summarize the rules that should help you understand how objects are
handled:

• Java methods pass all parameters by value.
• The value of a reference variable is the address of an object.
• Another variable becomes an alias for an object when that variable is assigned to

another reference.
• A local variable and parameter are only visible inside the method in which they are

defined. They are not accessible outside that method’s scope.

So, when I pass p to the change method,

• The p in main and p in change are completely different variables!
• The value of p passed to change is the address of the Dimmu object.
• The value of p inside the change method becomes an alias of the Dimmu object.
• The object’s field name is changed when assigning p.name, because change’s p

still refers to the Dimmu object.
• Setting p to null removes the address stored in change’s p. But, main’s p is still

alive and stores the address of the Dimmu object.
• Exiting the change method and returning to the point in which it was called

deallocates all the memory from change. But, main’s variables are still alive!
That method isn’t finished yet.

Java Bootcamp Step 22 Page 55/76
22.3 “Return an object” (actually, return a reference to an object)

Because a constructor creates an object and then returns a reference to it, you can think of
the constructor call as an expression. For instance, just as Math.sqrt(4) returns 2, the
expression new Person("Shagrath") returns a value, which is a reference. So, instead
of saying something like this:

public Something method() {
Something s = new Something();
return s;

}

try this:

public Something method() {
return new Something();

}

22.4 Example

In your Complex class, you might have an add method that looks something like this:

public Complex add(Complex other) {
return new Complex(r + other.r , i + other.i);

}

By relying on references and aliases, you can add two Complex numbers as follows:

Complex c = new Complex(1,2).add(new Complex(3,4));

22.5 Problem 2

If you can demonstrate that the following code outputs the value: 28.0, you’ve pretty
much nailed the rules about scope:

class blah {
public int x1 = 10;
public int x2 = 17;
public String method1(double x1) {

if (x1 > 0) { int x2 = 1; }
{ boolean x2 = true; }
return method2(x1 + x2);

 }
 public String method2(double x2) {

return "the value: " + (x2 + x1);
}

}

public class TestScope {
public static void main(String[] args) {

System.out.println(new blah().method1(1));
}

}

Java Bootcamp Step 23 Page 56/76
Step 23: Using Java’s this

23.1 “The Current Object”

Recall that the code in a class provides a blueprint to create an object, which provides the
following design for Java:

• When you call a constructor, you create one object at a time.
• When you access that object’s members via the dot operator, you access just that

object’s members, because each object is unique.

These reminders might seem obvious, but there is a subtle concept–the notion of the
current object.

Refer to this example that I’ve been using:

class Complex {
private double re, im; // components of current object
public Complex(double r, double i) {

re = r; im = i;
}
public Complex add(Complex other) {

return new Complex(re+other.re, im+other.im);
}

}

Note how the add method knows that re and im refer to the current object’s fields? In
case you’re not sure who that current object is, I’ll show how the rules about the current
object apply. The following code uses Complex from above:

public class TestCurrent {
public static void main(String[] args) {

Complex c1 = new Complex(1,2);
Complex c2 = new Complex(3,4);
c1.add(c2); // c1 is current, c2 is supplied
c2.add(c1); // c2 is current, c1 is supplied

}
}

When I call c1.add(c2), Java works with c1’s members (re, im, add–of course, only
add can be accessed from outside the class). The trick from a few sections ago is that the
dot resembles as “has-a” or “pointer.” Inside the add method, other becomes an alias for
the object that c2 refers to. So, when Java calls other.re, Java thinks of other as the
current object, which has its own re.

If you’re wondering how I circumvented the privates, look back a few sections on a
nitpicking rule (Step 19.6) that explains how objects from the same class can access
private members. Normally you really should use a getter method.

Java Bootcamp Step 23 Page 57/76
23.2 Representing the current object

Now and then you actually need to express the current object inside a class. There are
three general situations:

• You want to call another constructor of the same class as part of another
constructor.

• You want to distinguish between a field and local variable that have identical
names.

• You need to assign the current object to a supplied object.

Java’s keyword for the current object is this, which I think it the funniest keyword in the
history of programming. The Whitespace programming language is really funny, too.

23.3 Constructor Chaining

Suppose you don’t want an “empty” Person to be created. You could chain one
constructor to another by calling a constructor of the current class, which means calling
this(args). For example, below, Person() ends up executing Person(String f,
String l), because the arguments of this("John","Doe") match it:

class Person {
private String first, last;
public Person() {

this("John","Doe");
}
public Person(String f, String l) {

first = f; last = l;
}

}

Remember that the first statement of a constructor can be this(args) or super(args).
Eventually, the last constructor in the chain of calls in the current class must have just
super(args).

Java Bootcamp Step 23 Page 58/76
23.4 Field and Variable Name Conflicts

All methods know about the this, which helps you to resolve name conflicts. If a method
has a variable (local or parameter) with the same name as a field, the method chooses the
variable before the field! To access the field, you must tell Java, “the current’s object
version of name.” So, in code, you would say this.name.

class Person {
private String name;
public Person(String name) {

this.name = name;
}

}

In the constructor, the String name is a declaration of the parameter, which has nothing
to do with the field! To access the field (private String name), you need to tell Java,
“give me the current object’s field name” with this.name. Note: If you do not have a
name conflict, do not use this.name! I don’t care if you “just want to be safe!”

23.5 Storing Current Object Reference

Sometimes you need to say “the supplied object refers the current object” in some fashion.
Unfortunately, until you learn more about data structures, the examples are really
contrived.

Here is one of those classic problems: Suppose you want to make two Persons be each
other’s friends. To do so,

• Create a Person who has an unknown friend.
• Create another Person who has an unknown friend.
• Set the first Person’s friend to the second Person.
• Set the second Person’s friend to the first Person.

So, here is the main class, which presents the above algorithm:

public class ThisTest {
public static void main(String[] args) {

Person p1 = new Person("A");
Person p2 = new Person("B");
p1.makeFriends(p2);
System.out.println(p1);
System.out.println(p2);

 }
}

Note that friends must be of type Person! Refer to the following example:

Java Bootcamp Step 23 Page 59/76
class Person {

private String name; // a Person has a name
 private Person friend; // a Person has a friend (who is a Person)

// Create a Person object with name:
public Person(String name) {

this.name = name;
 }

// Set current Person's friend to supplied friend:
 public void makeFriends(Person friend) {

this.friend = friend;
friend.friend = this;

 }

// Stringify current Person:
public String toString() {

return "I am "+name+"\nand my friend is "+friend.name;
 }

}

Explanation:

// Set current Person's friend to supplied friend:
 public void makeFriends(Person friend) {

this.friend = friend;
friend.friend = this;

 }

• The parameter friend and field friend have a name conflict! So,
this.friend = friend means that the current object’s field friend gets the
value of the supplied parameter friend (the supplied Person object).

• The supplied Person’s friend needs to become the current Person. So, the
friend’s friend (supplied object’s field friend) gets the current Person (the
reference to the current object).

The trick above is to remember the scope rules. When I declare Person friend as a
parameter, Java will use that parameter when I say friend and friend.something.
C++ programmers should note that there is nothing special about the name friend in
Java. If you prefer, change the name friend to blurgo, and you’ll get the same result.

23.6 Problem

The above example is pretty intense already if you have never seen Java. If you feel
comfortable with it, try programming this old adage: “the enemy of my enemy is my
friend,” but add a bit more: “…and I will be that friend’s friend.”

I suppose you could try to make this problem more complicated by setting more enemies
and friends–throw in a few allies and neutral parties for good measure. If you want to be
even more bonkers, use only underscores for names.

Java Bootcamp Step 24 Page 60/76
Step 24: Arrays

24.1 Java Arrays

General principles:

• Java arrays are objects.
• Java arrays are 1-D. To make a multidimensional array, you need to make an array

of arrays.
• Java arrays have a special kind of constructor.
• Java arrays are strongly typed–all elements must have the same type.
• You cannot change the size of an array after you create it. Arrays are not dynamic!

24.2 Creating 1-D Arrays

Declaration:

type[] name;
type name[];

• The type can be any valid type: primitive and reference.
• You can declare multiple names in the same statement, but we advice against it.

Assignment:

type[] name;
name = new type[size];

type[] name = new type[size];

• Think of new type[size] as a constructor.
• size must be an integer (0 or greater) or expression that evaluates to an integer.
• All values inside the array are “zero.” Think of each element as a “field” of the

object. Refer to the rules for default values of fields in classes.

Example:

int[] x = new int[10]; // default values? 0
Person[] p = new Person[2]; // default values? null!

Java Bootcamp Step 24 Page 61/76
24.3 Indexing/Accessing/Storing

Expression syntax:

name[index]
name[index].member

Statement syntax:

name[index] = expression;
name[index].method(…);

More rules:

• Labeling of indices starts at zero!
• index must be an integer or integer expression that corresponds to the position of

an element in the array.
• If you attempt to access an index that does not exist, Java complains with an with

out-of-bounds exception.
• To access an array’s length, use the “secret field” length, e.g., x.length. Note

that Java strings use the length() method.
• The []s have higher precedence than dot (.).

- So, if I want to access a Person object’s name, for example, I can say
p[2].getName();.

- Of course, p[2] must first store a Person object!

24.4 Array of Objects

People often forget to fill an array with objects! Suppose that you want to print an array of
Complex numbers:

final int SIZE = 4;
Complex[] c = new Complex[SIZE];
for (int i = 0 ; i < c.length; i++)

System.out.println(c[i]);

When you run the above code, all you get is four nulls. Why? The default value of all
objects is zero for fields, as discussed in the previous section. So, you need first to fill the
array!

final int SIZE = 2;
Complex[] c = new Complex[SIZE];
c[0] = new Complex(0,1);
c[1] = new Complex(1,2);
for (int i = 0 ; i < c.length; i++)

System.out.println(c[i]);

24.5 Problem 1

Write a program that creates an array of 10 random Complex numbers.

Java Bootcamp Step 24 Page 62/76
24.6 Problem 2

Write a method rotate that returns a character array that contains the rotation of the
lowercase English alphabet for an input of shift. A rotation is a simple form of
encryption in which a character is shifted a given number of characters to the left. Assume
that shift is a legal integer between 0 and 26. For instance, rotate(3) produces a
character array in the order xyzabcdefghijklmnopqrstuvw. Test your program
with a few strings. If you need to refresher on characters, refer to the earlier sections on
the Java language.

Note that there is nothing special about a method that returns an array other than the fact
that it really returns a reference to an array. Your method header for rotate might be as
follows:

public static char[] rotate(int shift)

The last statement will return an expression of type char[].

24.7 Initializer Lists

If you have a small array and known values, you can use an initializer list to declare,
assign, and store in one statement.

type[] name = { e1 , … , en } ;

There are some interesting rules that seem to depart from standard Java convention:

• The entire statement must be in on one line.
• You need to place a semicolon after the last brace.

Examples:

int[] x = { 1 , 2 , 3 } ;
Person[] p = { new Person("A"), new Person("B") } ;

24.8 Anonymous Arrays

Sometimes someone decides to return to return an initializer list, as in

return {1,2,3} ;

Unfortunately, Java does not permit this syntax. Instead you have to use the more general
form of the initializer list, which is called an anonymous array:

new type[] { e1 , … , en }

CS211 will cover anonymous classes later on in the semester, so don’t worry too much
about this particular topic for now.

Java Bootcamp Step 24 Page 63/76
24.9 Arrays of Arrays (Multidimensional Arrays)

To make a multidimensional array, you need to use an array of arrays. Why?

• An array can hold references to objects.
• An array is an object.

Syntax:

• completely specified: hyper-dimensional rectangular box:
type[][][]… name =new type[size1][size2][size3]…

• partially specified: hyper-dimensional ragged:
type[][]… name =new type[size1][]…

The length field:

• size of 1st dimension: name.length
• size of 2nd dimension: name[i].length

(also size of ith array, like row or column)
• size of 3rd dimension: name[i][j].length

2-D examples:

public class Test2DArray {
public static void main(String[] args) {

int[][] x = new int[2][3]; // just defaults
printArray(x);

int[] a = { 1 , 2 , 3 } ;
int[] b = { 4 , 5 } ;
int[][] y = new int[2][];
y[0] = a;
y[1] = b;
printArray(y);

}

public static void printArray(int[][] x) {
for (int row = 0 ; row < x.length ; row++) {

for (int col = 0 ; col < x[row].length ; col++)
System.out.print(x[row][col] + "");

System.out.println();
}

}
}

Java Bootcamp Step 24 Page 64/76
3-D Example:

public class Test3DArray {
 public static void main(String[] Sgra) {

int[][][] x = new int[3][][];
 x[0] = new int[2][];

x[0][1] = new int[4];

}
}

24.10 Problem 3

Trace the following code. Write the printArray method. To print 3-D, print each “layer”
of the 3-D array by thinking of the array as a 1-D array of 2-D arrays.

public class aoa3d {

private static int[][][] x;

public static int myRandom(int low, int high) {
return (int) (Math.random()*(high-low+1)) + low;

}

public static void main(String[] args) {
createArray();
printArray();

} // main

private static void createArray() {
x = new int[2][][];

for (int d1 = 0; d1 < x.length ; d1++) {
x[d1] = new int[2][];

for (int d2 = 0; d2 < x[d1].length ; d2++) {
x[d1][d2] = new int[myRandom(1,2)];

for (int d3 = 0; d3 < x[d1][d2].length ; d3++) {
x[d1][d2][d3] = myRandom(0,1);

}
}

}
}

}

Java Bootcamp Step 24 Page 65/76
24.11 Simulating Dynamic Arrays

Java arrays must have a size, which cannot be changed once the array is created. But there
are a couple of useful tricks.

Objects:

class IntArray {
private int[] x;
public IntArray(int n) {

x = new int[n];
}

}

• You can call new IntArray(size) with an any valid size.
• Of course, once you create that object, its internal array x is now fixed.

Methods:

• Actually, we’ve already been using the trick of copying reference values.
• When you call a method, like something(int[] x), the parameter x gets the

address of the array that you supply.

There is a formal “dynamic array” in Java, which is called a Vector. See next section.

24.12 Iterating through an array with for-each

Java 5 introduced the for-each control structure, which I show briefly in Step 12.8. When
using arrays, the index for iteration can be a nuisance. So, to condense the following
common pattern:

Type[] a = Expression;
for (int i = 0; i < a.length; i++) {

Type e = a[i];
statements using e

}

you could use the following pattern:

Type[] a = Expression;
for (Type e : Expression) {

statements using e
}

The pattern above means “for each e in expression, do something.”

(continued on next page)

Java Bootcamp Step 24 Page 66/76
The following example demonstrates the for-each by printing a collection of strings:

String[] s = {"A", "B", "C"};
for (String e : s)

System.out.print(e);
System.out.println();

The above example will output ABC.

You can also iterate over general collections of data, which we will explore when reaching
Vectors in Step 30. For more information, refer to Java’s general explanation of syntax
and semantics that I used to write this section at this website:
http://jcp.org/aboutJava/communityprocess/jsr/tiger/enhanced-for.html.

24.13 Problem 4

Write a program that does the following two tasks:

• Adds and outputs the sum of all elements in an array of integers. Use this array in
your main method:int[] a = {1 , 2 , 3 }.

• Searches the same array a for the number 2 in a method called find2. Upon
finding 2, method find2 returns true without inspecting any further elements.

http://jcp.org/aboutJava/communityprocess/jsr/tiger/enhanced-for.html

Java Bootcamp Step 25 Page 67/76
Step 25: Class Object

25.1 Background

I have tried to avoid too much conversation about inheritance, because it is a subject we go
over again in CS211. But, class Object is important–all classes in Java extend Object.
So, Object is a supertype of all reference types. What makes this notion extremely useful
for data structures is that a supertype reference can store a subtype reference with no
hassle. You can then write general data structures that have contents of type Object,
which allows you to store every kind of object. Pretty handy!

25.2 Problem

How many methods do all objects in Java automatically inherit?

25.3 Example: equals revisited

You can define equality for any class using Object’s equals method. In the example,
below, I define equality for class A as equivalence of A’s instance variable k:

public class Equals {
public static void main(String[] args) {

A a1 = new A(1);
A a2 = new A(1);
System.out.println(a1.equals(a2));

}
}

class A {
public int k;
public A(int k) { this.k = k; }
public boolean equals(Object other) {

return k == ((A) other).k;
}

}

25.4 Problems

What is the output of Equals? Would you get the same output if you print out a1==a2?
Why or why not?

If you define a class B that extends A,

class B extends A {
public B(int k) { super(k); }

}

will an object of B equal an object A and if they have the same value of k? Demonstrate
your answer with new A(1).equals(new B(1)) and
new B(2).equals(new A(2)).

Java Bootcamp Step 26 Page 68/76
Step 26: Java API and import

26.1 The Gist

Java provides many, many kinds of classes that can help you rapidly build programs
without having to worry about nitty-gritty details of system calls, painting pixels, and
“recreating the wheel” for all kinds of general classes. Check out the Java API
(application programming interface) link on the CS211 website:
http://java.sun.com/j2se/1.5.0/docs/api/index.html.

CS211 tends to use the following packages (collections of classes), which you can scroll
through on the top, left corner of the API website:

• java.lang: all classes automatically loaded for your programs
• java.util: data structures and algorithms
• java.awt.event: GUIs
• javax.swing: GUIs

26.2 Loading Classes

Except for java.lang’s classes, you need to import an API’s entire package or particular
class if you have identified something that you wish to use.

To access a particular class, use import package.class at the top of your program:

import java.util.Arrays;

public class API {
public static void main(String[] args) {

String[] s1 = {"A", "B", "C"};
String[] s2 = {"A", "B", "D"};
System.out.println(Arrays.deepEquals(s1,s2));

 }
}

Occasionally, you may see programmer write the entire class path directly in the code
when the class is used. To import all classes from a package, use the wildcard *, as
follows:

import java.util.*;

public class API {
public static void main(String[] args) {

String[] s1 = {"A", "B", "C"};
String[] s2 = {"A", "B", "D"};
System.out.println(Arrays.deepEquals(s1,s2));

 }
}

You may have multiple import statements in your file.

http://java.sun.com/j2se/1.5.0/docs/api/index.html

Java Bootcamp Step 27 Page 69/76
Step 27: Constants: Static Import and Enumerations (enum)

27.1 Motivation

As you go through the API, you will discover that the API’s classes not only contain
useful methods, but several defined constants as well. You may eventually define your
constants. Up until Java 5, programmers would define constants in interfaces, and then
implement those interfaces, as follows:

interface Blah {
public static final int ANSWER=42;

}

public class Something implements Blah {
public static void main(String[] args) {

System.out.println(ANSWER);
}

}

Note that type Blah is meaningless with respect to any class that might implement it.

27.2 Static Import

You can actually import constants from a class or interface, as discussed in http://
java.sun.com/j2se/1.5.0/docs/guide/language/static-import.html.

27.3 Problem 1

Write a program that imports all of the constants from class Math in the API. Output some
of those values.

27.4 Enumerations (also, Enumerated Types or just enums)

An enum is a special kind of class in Java that allows you define types and unique values.
One way to think of an enum is a user-defined “primitive value.” In other languages, an
enum is effectively an integer, though you see names, not numbers. However, in Java, an
enum is object oriented.

Check out http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html to learn a
number of enum tricks. The following example demonstrates a few:

http://java.sun.com/j2se/1.5.0/docs/guide/language/static-import.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/static-import.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/enums.html

Java Bootcamp Step 27 Page 70/76
enum Color {BLUE, RED}

enum Coin {
penny(1), dime(10);
private final int value;
Coin (int value) { this.value=value;}
public int value() {return value;}
public String toString() {

return this==penny? "p" : "d";
}

}

public class Enums {

public static void main(String[] args) {

Color marble = Color.BLUE;
Coin c = Coin.penny;
System.out.println(Coin.dime);
System.out.println(c.value()+Coin.dime.value());

}
}

27.5 Problem 2

Review the above link concerning enums. Write a program that uses enums to model
playing cards. Your program randomly shuffle a random deck of cards and then print out
each card in order, from top to bottom.

Java Bootcamp Step 28 Page 71/76
Step 28: Wrapper Classes

28.1 Java Types

For better or for worse, Java has two kinds of types:

• primitive: int, double, boolean, char, …
• reference: all classes, interfaces, enums, null

To make generic data structures, you will generally use class Object, which means that
you might need a way to convert primitives to objects. Java provides wrapper classes for
all primitive types, which you can find in the java.lang package. You never need to
import any classes from this package, since Java automatically uses them.

For example, to create an Integer object from the primitive value 4, you would do this:

Integer i = new Integer(4);

You can now store i in an Object variable:

Object o = i;

To get a handle on how Integer works, it has this approximate structure:

class Integer {
private int value;
public Integer(int value) {

this.value = value;
}
// more methods--see java.lang.Integer in API

}

28.2 Do we still need wrapper classes?

Java 5 has autoboxing of primitive types, which automatically converts them to their
equivalent wrapper types. See Step 29 for more detail. However, you may still need to
wrap object types within others, depending on the application. For example, consider the
“dynamic array” of Step 24.11–we wrap an array, which is a class, with another kind of
class.

28.3 Problem 1

Without relying on autoboxing, create an array of integers

int[] a = { 1, 2, 3, 4 };

that can be passed into a method

int addInts(Object[] x)

that returns the integer sum of all elements in x.

Java Bootcamp Step 29 Page 72/76
Step 29: Autoboxing

29.1 Common Irritation

In older versions of Java, you could not mix reference and primitive types. For example,
given a data structure of Object types, if a user tried to enter an integer, you had to
convert the value to its wrapper class Integer. For example, you might see this sort of code
in older Java:

Object[] o = { new Integer(1), new Integer(2), new Integer(3) };

29.2 Autobox/Unbox

To ease your frustration, Java 5 will automatically “upgrade” (autoboxing) or
“downgrade” (unboxing) a primitive type to its wrapper equivalent.

For example, the following code demonstrates autoboxing of the integer 1:

Object o = 1 + new Integer(2);

When unboxing, an reference type can be converted to its primitive type, as follows:

int x = 1 + new Integer(2);

29.3 Some issues

Do not rely on autoboxing/unboxing if you have several numerical computations, as these
features involve a performance hit. For more information, review http://java.sun.com/j2se/
1.5.0/docs/guide/language/autoboxing.html.

29.4 Problem 1

If you output x and o in the above example, you get the same answer. Why?

29.5 Problem 2

An Integer object can be null. So, can you unbox null? What happens if you do?

http://java.sun.com/j2se/1.5.0/docs/guide/language/autoboxing.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/autoboxing.html

Java Bootcamp Step 30 Page 73/76
Step 30: Vectors

30.1 Dynamic data structure

In CS211, you will learn about special ADTs that hold information and provide methods to
store, access, and analyze that data. Of course, arrays provide an extremely quick and easy
way to store and access information. In fact, most languages provide them as part of the
language. However, arrays are static data structures, which means they do not change in
size. Once created, the only way to insert more information is to create another array,
which can be computationally expensive if you have huge large sets. A dynamic data
structure can indeed change in size.

30.2 Vector

A nice bridge between arrays and dynamic data structures is a vector, which resembles an
array. However, a vector can grow and shrink! So, when you need to store information, a
vector allows you to make an initial guess on much space you need. If need more space,
you can simply add more elements. The vector will automatically grow. You can also
remove elements, which will cause the vector to shrink.

30.3 Java API and import statements reminder

Class Vector is part of java.util. According to Step 26, you will need to import
Vector. You can use either of the following import statements at the top of your file:

• Import all classes in the java.util package, which contains Vector:
import java.util.*;

• Import just Vector:
import java.util.Vector;

In general, I tend to import all of java.util, figuring that I’m bound to need something
else–it’s a very nice collection of data structures!

30.4 Generics

You might get a compiler warning if you do not use something called generics. For
example, if you have a Vector of Strings and/or Integers, you should use the
following syntax when declaring your Vector:

Vector<String,Integer> v = new Vector<String,Integer> ();

For more information about generics, check out http://java.sun.com/j2se/1.5.0/docs/guide/
language/generics.html.

http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html
http://java.sun.com/j2se/1.5.0/docs/guide/language/generics.html

Java Bootcamp Step 30 Page 74/76
30.5 Problem 1

Without relying on Java’s autoboxing feature, write a program that starts with a Vector
of no elements. Add a sequence of random integers. For more fun, try a bunch of different
types. Print the entire contents of Vector in order. Then, remove all the elements until the
Vector size is zero.

30.6 Problem 2

Repeat Problem 1, except that now you can rely on autoboxing.

30.7 Problem 3

Write a program that creates a randomly-sized (0 to 20, inclusive) vector of random
positive integers. Your program will print out the vector, delete all the odd integers from
the Vector, and then print the remaining elements. Note that you must use only the
original Vector that you create. So, there should be only one Vector for adding and
deleting elements!

30.8 Problem 4

Write a program that does the following:

• Builds a Vector of 10 random integers that range from 1 to 10, inclusive.
• Searches the Vector for all of its even values.
• Outputs the sum of the even values.

For the iteration, use a for-each structure. This structure will work because Vector
conveniently implements the Collection interface, which is part of the java.util API.
For more information, refer to http://jcp.org/aboutJava/communityprocess/jsr/tiger/
enhanced-for.html.

http://jcp.org/aboutJava/communityprocess/jsr/tiger/enhanced-for.html
http://jcp.org/aboutJava/communityprocess/jsr/tiger/enhanced-for.html

Java Bootcamp Step 31 Page 75/76
Step 31: User I/O

31.1 Class Scanner

If you have learned Java with version 1.4.2 or earlier, you were likely using a non-
standard class to assist with user and/or file input. Java 5 introduced a great new class
called Scanner that simplifies the process of obtaining input.

31.2 Example

import java.util.*;

public class UserIO {

public static void main(String[] args) {

// "plain" user I/O (no type checking):
Scanner in = new Scanner(System.in);
System.out.print("Please enter a legal integer: ");
in.nextInt();

// fancier user I/O:
boolean stop = false;
System.out.print("Please enter an integer: ");
while(!stop) {

Scanner s = new Scanner(System.in);
 try {

s.nextInt();
stop = true;

}
 catch (Exception e) {

System.out.print("Not legal! Re-enter: ");
 }
}

}

}

31.3 Problem 1

Run the above program. What happens if you enter non-integer input at the first prompt?

31.4 Problem 2

Although you might not have seen a try-catch structure beforehand, explain what the
second input structure does when you run the program.

Java Bootcamp Step 32 Page 76/76
Step 32: Other things for the future…?

32.1 Output and Formatting

32.2 File I/0

32.3 Move Applications.html and Java links to this tutorial

32.4 Javadoc

32.5 Define and use packages

32.6 Exceptions

32.7 Generics

	Java Bootcamp
	David I. Schwartz
	COMS/ENGRD 211
	Read Step 1 first on Page 3! It will explain what you need to do!

	Table of Contents
	Step 0: Understand the notation in this tutorial.
	Step 1: Figure out how to do this tutorial.
	1.1 Background
	1.2 Time?
	1.3 On-line Help:
	1.4 Some suggestions
	1.5 Problem 1
	1.6 Problem 2

	Step 2: How to find Java at Cornell.
	2.1 Background
	2.2 Java Environments
	2.3 Examples and Help
	2.4 Problem 1
	2.5 Problem 2

	Step 3: What is a Java application?
	3.1 Long Answer
	3.2 The Gist
	3.3 Problem 1

	Step 4: Java Language
	4.1 Language Analogy
	4.2 What’s next?
	4.3 On-line help
	4.4 Problem

	Step 5: Java Character Set
	5.1 Unicode and ASCII
	5.2 Problem 1
	5.3 Problem 2
	5.4 Submitting Your Homework in ASCII

	Step 6: Java Comments and Whitespace
	6.1 Java Comments
	6.2 Java Whitespace
	6.3 Problem 1

	Step 7: Java Tokens
	7.1 Punctuation
	7.2 Problem 1
	7.3 Reserved Words
	7.4 Values
	7.5 Problem 1
	7.6 Strings
	7.7 Problem 2
	7.8 Identifiers
	7.9 Problem 1
	7.10 Operators
	7.11 Problem 2

	Step 8: Java Statements
	8.1 Statement Types
	8.2 Methods and Objects
	8.3 Problem 1

	Step 9: Empty and Block Statements
	9.1 Empty
	9.2 Block
	9.3 Expression
	9.4 Problem 1

	Step 10: Declaration and Assignment Statements
	10.1 The Rules
	10.2 Declaration Syntax
	10.3 Assignment Syntax
	10.4 Problem 1

	Step 11: Introduction to Scope
	11.1 Blocks
	11.2 Variables
	11.3 Methods
	11.4 Classes
	11.5 Why nested blocks?
	11.6 Problem 1
	11.7 Problem 2

	Step 12: Control Flow
	12.1 Execution
	12.2 Labeled Statements
	12.3 Break Statement
	12.4 Selection Statements
	12.5 if Statement
	12.6 switch Statement
	12.7 Problems
	12.8 Repetition Statements
	12.9 Repetition Examples
	12.10 Problem 1
	12.11 Blocks in Control Flow and Scope Reminders
	12.12 Problem 2

	Step 13: Methods
	13.1 Where do they go?
	13.2 Method Syntax
	13.3 Problem 1: Random Integers
	13.4 Scope
	13.5 Static vs. Non-static and OOP (more later!)
	13.6 Problem 2
	13.7 Parameters
	13.8 Return Type and Values
	13.9 Problem 3
	13.10 Problem 4
	13.11 Method Overloading
	13.12 Problem 5
	13.13 Problem 6: Variable Arguments
	13.14 The Stack
	13.15 Recursion
	13.16 Advanced Problem

	Step 14: Building A Class
	14.1 Should you do this section?
	14.2 ADTs
	14.3 Designing a Class
	14.4 Design By Abstraction
	14.5 Overall Structure
	14.6 Problems

	Step 15: Creating Objects
	15.1 Where are we?
	15.2 Constructor Syntax
	15.3 Problem 1
	15.4 Constructor Rules: No Inheritance
	15.5 Constructor Rules: Inheritance
	15.6 Problems
	15.7 Problem 2: Really Bonkers (Not Recommended)

	Step 16: Storing and Accessing Objects (References)
	16.1 Where are we?
	16.2 What’s a reference?
	16.3 Comparing Primitive and Reference Values
	16.4 Picture
	16.5 Problem 1

	Step 17: Special reference-null
	17.1 What happens if you have no object?
	17.2 Example
	17.3 Problem 1

	Step 18: Special method-toString
	18.1 Why bother?
	18.2 Example
	18.3 Problem 1

	Step 19: Accessing an object’s members
	19.1 Where are we?
	19.2 Member Access
	19.3 Examples
	19.4 Objects are unique (reminder)
	19.5 Changing an object’s fields
	19.6 Privacy: A Nitpicking Detail
	19.7 Problem 1

	Step 20: What is static?
	20.1 Mystery revealed!
	20.2 Syntax and Rules
	20.3 Example
	20.4 static and other modifiers
	20.5 Problem 1
	20.6 Problem 2
	20.7 Problem 3
	20.8 Problem 4

	Step 21: Aliases
	21.1 Demonstration
	21.2 Relevant rules
	21.3 Problem 1
	21.4 Problem 2

	Step 22: Methods and objects (and aliases)
	22.1 Problem 1: Scope revisited (yet again)
	22.2 The rules
	22.3 “Return an object” (actually, return a reference to an object)
	22.4 Example
	22.5 Problem 2

	Step 23: Using Java’s this
	23.1 “The Current Object”
	23.2 Representing the current object
	23.3 Constructor Chaining
	23.4 Field and Variable Name Conflicts
	23.5 Storing Current Object Reference
	23.6 Problem

	Step 24: Arrays
	24.1 Java Arrays
	24.2 Creating 1-D Arrays
	24.3 Indexing/Accessing/Storing
	24.4 Array of Objects
	24.5 Problem 1
	24.6 Problem 2
	24.7 Initializer Lists
	24.8 Anonymous Arrays
	24.9 Arrays of Arrays (Multidimensional Arrays)
	24.10 Problem 3
	24.11 Simulating Dynamic Arrays
	24.12 Iterating through an array with for-each
	24.13 Problem 4

	Step 25: Class Object
	25.1 Background
	25.2 Problem
	25.3 Example: equals revisited
	25.4 Problems

	Step 26: Java API and import
	26.1 The Gist
	26.2 Loading Classes

	Step 27: Constants: Static Import and Enumerations (enum)
	27.1 Motivation
	27.2 Static Import
	27.3 Problem 1
	27.4 Enumerations (also, Enumerated Types or just enums)
	27.5 Problem 2

	Step 28: Wrapper Classes
	28.1 Java Types
	28.2 Do we still need wrapper classes?
	28.3 Problem 1

	Step 29: Autoboxing
	29.1 Common Irritation
	29.2 Autobox/Unbox
	29.3 Some issues
	29.4 Problem 1
	29.5 Problem 2

	Step 30: Vectors
	30.1 Dynamic data structure
	30.2 Vector
	30.3 Java API and import statements reminder
	30.4 Generics
	30.5 Problem 1
	30.6 Problem 2
	30.7 Problem 3
	30.8 Problem 4

	Step 31: User I/O
	31.1 Class Scanner
	31.2 Example
	31.3 Problem 1
	31.4 Problem 2

	Step 32: Other things for the future…?
	32.1 Output and Formatting
	32.2 File I/0
	32.3 Move Applications.html and Java links to this tutorial
	32.4 Javadoc
	32.5 Define and use packages
	32.6 Exceptions
	32.7 Generics

