
Course Review
&

A Few 
Unanswered 

Questions

Lecture 26
CS211 – Spring 2007

2

Announcements

Final Exam
Monday, May 14
9:00 - 11:30 am
Uris Auditorium

Review Session
To be announced
Watch the website

Check your final exam 
schedule!

For exam conflicts:
Notify Kelly Patwell
(patwell@cs.cornell.edu)
today
You must provide

Your entire exam schedule
Include the course numbers

Definition of exam conflict:
Two exams at the same time or
Three or more exams within 24 
hours

3

Announcements

Jealous of the glamorous life 
of a CS consultant?

We're recruiting next-semester 
consultants for CS100 and 
CS211
Interested students should fill 
out an application, available in 
303 Upson Hall

Check the course website for 
additional announcements as 
the final exam approaches

Consulting ends this week
No consulting on slope day
Office hours continue until 
Final Exam

There may be changes (TAs 
have exams, too)
Any changes will be announced 
on the course website

4

Course Evaluations

Worth one assignment point
Will count as 1% of your course grade
This is a regular point, not a bonus point
Anonymity

We get a list of who completed the course evaluations and a list of 
responses, but no link between names & responses

Closes Friday May 4 midnight

http://www.engineering.cornell.edu/CourseEval
This link also appears on the CS211 Announcements page

5

Course Overview

Programming concepts
We use Java, but the goal is to 
understand the ideas rather than 
to become a Java expert

Recursion
Object-Oriented Programming
Interfaces
Graphical User Interfaces (GUIs)

Data structure concepts
The goal here is to develop skill 
with a set of tools that are 
widely useful

Induction
Asymptotic analysis (big-O)
Arrays, Trees, and Lists
Searching & Sorting
Stacks & Queues
Priority Queues
Sets & Dictionaries
Graphs

6

Programming Concepts

Recursion
Stack frames
Exceptions

Object-oriented programming
Classes and objects
Primitive vs. reference types
Dynamic vs. static types
Subtypes and Inheritance

Overriding
Shadowing
Overloading
Upcasting & downcasting

Inner & anonymous classes

Interfaces
Type hierarchy vs. class 
hierarchy
The Comparable interface
Iterators & Iterable

GUIs
Components, Containers, & 
Layout Managers
Events & listeners



7

Data Structure Concepts
Induction
Grammars & parsing
Asymptotic analysis (big-O)

Solving recurrences
Lower bounds on sorting

Basic building blocks
Arrays
Lists

Singly- and doubly-linked
Trees

Binary Search Trees (BSTs)
Searching

Linear- vs. binary-search
Sorting

Insertion-, Selection-, Merge-, 
Quick-, and Heap-sort

Useful ADTs (& implementations)
Stacks & Queues

Arrays & lists
Priority Queues

Heaps
Array of queues

Sets & Dictionaries
Bit vectors (for Sets)
Arrays & lists
Hashing & Hashtables
BSTs (& balanced BSTs)

Graphs...

8

Overview of Graphs

Mathematical definition of a graph (directed, undirected)
Representations

Adjacency matrix
Adjacency list

Topological sort
Coloring & planarity
Searching (BFS & DFS)
Dijkstra’s shortest path algorithm
Minimum Spanning Trees (MSTs)

Prim’s algorithm (growing a single tree)
Kruskal’s algorithm (build a forest by adding edges in order)

Some Unsolved
Problems

10

Complexity of Bounded-Degree Euclidean MST

The Euclidean MST (Minimum 
Spanning Tree) problem: 

Given n points in the plane, 
determine the MST
Can be solved in O(n log n) 
time by first building the 
Delaunay Triangulation

Bounded-degree version:
Given n points in the plane, 
determine the MST where 
each vertex has degree ≤ d

Known to be NP-hard for d=3 
[Papadimitriou & Vazirani 84]
O(n log n) algorithm for d=5 or
greater

Can show Euclidean MST has 
degree ≤ 5

Unknown for k=4

11

Complexity of Euclidean MST in Rd

Given n points in dimension d, 
determine the MST

Is there an algorithm with 
runtime close to the 
Ω(n log n) lower bound?

Can solve in time 
O(n log n) for d=2

For large d, it appears that 
runtime approaches O(n2)

Best algorithms for general 
graphs run in time linear in m 
= number of edges

But for Euclidean distances on 
points, the number of edges is 
n(n-1)/2

12

O(n2) Time for X+Y Sorting?
How long does it take to a sort an 

n-by-n table of numbers?

O(n2log n) because there are n2

numbers in the table

What if it’s an addition table?
Shouldn’t it be easier to sort than 
an arbitrary set of n2 numbers?

There is a technique that uses 
just O(n2) comparisons [Fredman 
76] 

But it uses O(n2log n) time to
decide which comparisons to 
use [Lambert 92]

This problem is closely related to 
the problem of sorting the 
vertices of a line arrangement

n-by-n

+ 1 3 5 8
2 3 5 7 10

10 11 13 15 18
12 13 15 17 20
14 15 17 19 22



13

3SUM in Subquadratic Time?

Given a set of n integers, are 
there three that sum to zero?

O(n2) algorithms are easy 
(e.g., use a hashtable)
Are there better algorithms?

This problem is closely related 
to many other problems 
[Gajentaan & Overmars 95]

Given n lines in the plane, are 
there 3 lines that intersect in a 
point?
Given n triangles in the plane, 
does their union have a hole?

14

Great-Circle Graph 3-Colorable?

Build a graph by drawing 
great-circles on a sphere

Create a vertex for each 
intersection
Assume no three great circles 
intersect in a point

Is the resulting graph 3-
colorable?

All arrangements for up to 11 
great circles have been 
verified as 3-colorable

For general circles on the 
sphere (or for circles on the 
plane) the graph can require 4 
colors

15

The Big Question: Is P=NP?
P is the class of problems that 
can be solved in polynomial time

These problems are considered
tractable
Problems that are not in P are 
considered intractable

NP represents problems that, for 
a given solution, the solution can 
be checked in polynomial time

But finding the solution may be 
hard

For ease of comparison, 
problems are usually stated as 
yes-or-no questions

Examples

Given a weighted graph G and a 
bound k, does G have a spanning 
tree of weight at most k?

This is in P because we have an 
algorithm for the MST with runtime 
O(m + n log n)

Given graph G, does G have a 
cycle that visits all vertices?

This is in NP because, given a 
possible solution, we can check in 
polynomial time that it’s a cycle and 
that it visits all vertices

16

Current Status: P vs. NP

It’s easy to show that P ⊆ NP
Most researchers believe that 
P ≠ NP

But at present, no proof
We do have a large collection 
of NP-complete problems

If any NP-complete problem 
has a polynomial time 
algorithm, then they all do

A problem B is NP-complete if
1. it is in NP
2. any other problem in NP 

reduces to it efficiently
Thus by making use of an 
imaginary fast subroutine for B, 
any problem in NP could be 
solved in polynomial time

the Boolean satisfiability
problem is NP-complete [Cook 
1971]
many useful problems are NP-
complete [Karp 1972]
By now thousands of problems 
are known to be NP-complete

17

Some NP-Complete Problems
Graph coloring: Given graph G 
and bound k, is G k-colorable?
Planar 3-coloring: Given planar 
graph G, is G 3-colorable?
Traveling salesperson: Given 
weighted graph G and bound k, is 
there a cycle of cost ≤ k that visits 
each vertex exactly once?
Hamiltonian cycle: Give graph G, 
is there a cycle that visits each 
vertex exactly once?
Knapsack: Given a set of items i 
with weights wi and values vi, and 
numbers W and V, does there 
exist a subset of at most W items 
whose total value is at least V?

What if you really need an 
algorithm for an NP-complete 
problem?

Some special cases can be solved 
in polynomial time

If you’re lucky, you have such a 
special case

Otherwise, once a problem is 
shown to be NP-complete, the best 
strategy is to start looking for an 
approximation

For a while, a new proof showing 
a problem NP-complete was 
enough for a a paper

Nowadays, no one is interested 
unless the result is somehow 
unexpected

Good luck on the final!

Thanks for an enjoyable semester!

Have a great summer!

☺

☼


