Course Review
&

A Few
Unanswered
Questions

Lecture 26
CS211 — Spring 2007

Announcements

* Final Exam « For exam conflicts:
= Monday, May 14 = Notify Kelly Patwell
= 9:00 - 11:30 am (patwell@cs.cornell.edu)
= Uris Auditorium today
= You must provide
. . + Your entire exam schedule
* Review Session ¢+ Include the course numbers
= To be announced

* Watch the website * Definition of exam conflict:

= Two exams at the same time or

* Check your final exam = Three or more exams within 24
schedule! hours

Announcements

* Check the course website for
additional announcements as
the final exam approaches

= Consulting ends this week
= No consulting on slope day
= Office hours continue until
Final Exam
+ There may be changes (TAs
have exams, too)
+ Any changes will be announced
on the course website

« Jealous of the glamorous life
of a CS consultant?

= We're recruiting next-semester
consultants for CS100 and
Cs211

= Interested students should fill
out an application, available in
303 Upson Hall

Course Evaluations

* Worth one assignment point
= Will count as 1% of your course grade
= This is a regular point, not a bonus point
= Anonymity
+ We get a list of who completed the course evaluations and a list of
responses, but no link between names & responses

« Closes Friday May 4 midnight

= This link also appears on the CS211 Announcements page

Course Overview

* Programming concepts
+ We use Java, but the goal is to
understand the ideas rather than
to become a Java expert

= Recursion

= Object-Oriented Programming

= Interfaces

= Graphical User Interfaces (GUIs)

« Data structure concepts

+ The goal here is to develop skill
with a set of tools that are
widely useful

= Induction

= Asymptotic analysis (big-O)
= Arrays, Trees, and Lists

= Searching & Sorting

= Stacks & Queues

= Priority Queues

= Sets & Dictionaries

= Graphs

Programming Concepts

* Recursion * Interfaces

= Stack frames = Type hierarchy vs. class
hierarchy

= The Comparable interface
= Iterators & lterable

= Exceptions

* Object-oriented programming
= Classes and objects
= Primitive vs. reference types * GUIs
= Dynamic vs. static types = Components, Containers, &

= Subtypes and Inheritance Layout Managers
« Overriding = Events & listeners
+ Shadowing
+ Overloading
+ Upcasting & downcasting

= Inner & anonymous classes

Data Structure Concepts

* Induction
* Grammars & parsing
« Asymptotic analysis (big-O)
= Solving recurrences
= Lower bounds on sorting
« Basic building blocks
= Arrays
= Lists
+ Singly- and doubly-linked
= Trees
+ Binary Search Trees (BSTs)
* Searching
= Linear- vs. binary-search
* Sorting
= Insertion-, Selection-, Merge-,
Quick-, and Heap-sort

 Useful ADTs (& implementations)
= Stacks & Queues

* Arrays & lists

= Priority Queues

+ Heaps
+ Array of queues

= Sets & Dictionaries

« Bit vectors (for Sets)
 Arrays & lists

+ Hashing & Hashtables

+ BSTs (& balanced BSTs)

= Graphs...

Overview of Graphs

* Mathematical definition of a graph (directed, undirected)
* Representations
= Adjacency matrix
= Adjacency list
* Topological sort
* Coloring & planarity
* Searching (BFS & DFS)
« Dijkstra’s shortest path algorithm
* Minimum Spanning Trees (MSTs)
= Prim’s algorithm (growing a single tree)
= Kruskal's algorithm (build a forest by adding edges in order)

Complexity of Bounded-Degree Euclidean MST

* The Euclidean MST (Minimum ¢ Bounded-degree version:

Some Unsolved
Problems

Spanning Tree) problem:
= Given n points in the plane,
determine the MST
= Can be solved in O(n log n)
time by first building the

= Given n points in the plane,
determine the MST where
each vertex has degree < d
+ Known to be NP-hard for d=3
[Papadimitriou & Vazirani 84]

Delaunay Triangulation + O(n log n) algorithm for d=5 or
greater
\>~<‘: ;\r:(II
s N + Unknown for k=4

Complexity of Euclidean MST in R¢

* Given n points in dimension d, ¢ Best algorithms for general

determine the MST graphs run in time linear in m
= Is there an algorithm with = number of edges
runtime close to the = But for Euclidean distances on
Q(n log n) lower bound? points, the number of edges is
n(n-1)/2

» Can solve in time
O(n log n) for d=2

* For large d, it appears that
runtime approaches O(n?)

0O(n?) Time for X+Y Sorting?

How long does it take to a sort an + ‘ 1 3 5 8
n-by-n table of numbers?
Y 23 5 7 10

10 (11 13 15 18

12 113 15 17 20
14 115 17 19 22

* O(n%log n) because there are n « There is a technique that uses
numbers in the table just O(n?) comparisons [Fredman
76]

= Butituses O(nQ\og n) time to
decide which comparisons to
use [Lambert 92]
« This problem is closely related to
the problem of sorting the
vertices of a line arrangement

* What if it’s an addition table?

= Shouldn't it be easier to sort than
an arbitrary set of n? numbers?

3SUM in Subquadratic Time?

* Given a set of n integers, are * This problem is closely related
there three that sum to zero? to many other problems

Great-Circle Graph 3-Colorable?

* Build a graph by drawing
great-circles on a sphere
= Create a vertex for each

« For general circles on the
sphere (or for circles on the
plane) the graph can require 4

= O(n?) algorithms are easy
(e.g., use a hashtable)
= Are there better algorithms?

[Gajentaan & Overmars 95]
= Given n lines in the plane, are
there 3 lines that intersect in a
point?
= Given n triangles in the plane,
does their union have a hole?

intersection colors
= Assume no three great circles
intersect in a point
* |s the resulting graph 3-
colorable?

« All arrangements for up to 11
great circles have been
verified as 3-colorable

Current Status: P vs. NP

The Big Question: Is P=NP?

* P is the class of problems that * Examples
can be solved in polynomial time

« It's easy to show that P < NP
* Most researchers believe that

* A problem B is NP-complete if
1.itis in NP

= These problems are considered
tractable

= Problems that are not in P are
considered intractable

* NP represents problems that, for
a given solution, the solution can
be checked in polynomial time

= But finding the solution may be
hard

« For ease of comparison,
problems are usually stated as
yes-or-no questions

= Given a weighted graph G and a
bound k, does G have a spanning
tree of weight at most k?

+ This is in P because we have an
algorithm for the MST with runtime:
O(m +nlog n)

= Given graph G, does G have a
cycle that visits all vertices?

+ This is in NP because, given a
possible solution, we can check in
polynomial time that it's a cycle and
that it visits all vertices

P = NP 2. any other problem in NP
= But at present, no proof reduces to it efficiently
= We do have a large collection * Thus by making use of an
of NP-complete problems imaginary fast subroutine for B,
 If any NP-complete problem any problem in NP could be
has a polynomial time solved in polynomial time
algorithm, then they all do = the Boolean satisfiability
problem is NP-complete [Cook
1971]
= many useful problems are NP-
complete [Karp 1972]
= By now thousands of problems
are known to be NP-complete

16

Some NP-Complete Problems

* Graph coloring: Given graph G
and bound k, is G k-colorable?

« Planar 3-coloring: Given planar
graph G, is G 3-colorable?

* Traveling salesperson: Given
weighted graph G and bound k, is
there a cycle of cost < k that visits
each vertex exactly once?

* Hamiltonian cycle: Give graph G,
is there a cycle that visits each
vertex exactly once?

* Knapsack: Given a set of items i
with weights w; and values v;, and
numbers W and V, does there
exist a subset of at most W items
whose total value is at least V?

* What if you really need an
algorithm for an NP-complete
problem?

= Some special cases can be solved
in polynomial time

« If you're lucky, you have such a
special case

= Otherwise, once a problem is
shown to be NP-complete, the best
strategy is to start looking for an
approximation

« For a while, a new proof showing
a problem NP-complete was
enough for a a paper

= Nowadays, no one is interested
unless the result is somehow
unexpected

Good luck on the finall
Thanks for an enjoyable semester!

Have a great summer!

©

