

Course Review & A Few Unanswered Questions

Lecture 26 CS211 – Spring 2007

Announcements

- Final Exam
- Monday, May 14
- 9:00 11:30 am
- Uris Auditorium
- Review Session
 - To be announcedWatch the website
- Check your final exam schedule!
- For exam conflicts:
 - Notify Kelly Patwell (patwell@cs.cornell.edu) today
 - You must provide
 - Your entire exam schedule
 - Include the course numbers

Definition of exam conflict:

- Two exams at the same time or
- Three or more exams within 24 hours

2

Announcements

- Check the course website for additional announcements as the final exam approaches
 - Consulting ends this week
 - No consulting on slope day
 - Office hours continue until Final Exam
 - There may be changes (TAs
 - have exams, too)

 Any changes will be announced on the course website
- Jealous of the glamorous life of a CS consultant?
 - We're recruiting next-semester consultants for CS100 and CS211
 - Interested students should fill out an application, available in 303 Upson Hall

3

Course Evaluations

- · Worth one assignment point
- Will count as 1% of your course grade
- This is a regular point, not a bonus point
- Anonymity
 - We get a list of who completed the course evaluations and a list of responses, but no link between names & responses
- Closes Friday May 4 midnight
- http://www.engineering.cornell.edu/CourseEval
- This link also appears on the CS211 Announcements page

4

Course Overview

- Programming concepts
 - We use Java, but the goal is to understand the ideas rather than to become a Java expert
 - Recursion
- Object-Oriented Programming
- Interfaces
- Graphical User Interfaces (GUIs)
- Data structure concepts
 - The goal here is to develop skill with a set of tools that are widely useful
 - Induction
- Asymptotic analysis (big-O)
- Arrays, Trees, and Lists
- Searching & Sorting
- Stacks & Queues
- Priority QueuesSets & Dictionaries
- Graphs

Programming Concepts

- Recursion
 - Stack frames
 - Exceptions
- Object-oriented programming
- Classes and objects
- Primitive vs. reference typesDynamic vs. static types
- Subtypes and Inheritance
- Overriding
- Shadowing
- Overloading
- Upcasting & downcasting
- Inner & anonymous classes

- Interfaces
- Type hierarchy vs. class hierarchy
- The Comparable interface
- The Comparable interface
 Iterators & Iterable
- GUIs
 - Components, Containers, & Layout Managers
 - Events & listeners

6

Data Structure Concepts

- Induction
- · Grammars & parsing
- Asymptotic analysis (big-O)
- Solving recurrences
- Lower bounds on sorting
- Basic building blocks
- Arrays
- Lists
- Singly- and doubly-linked
- Trees
 Binary Search Trees (BSTs)
- Searching
 Linear- vs. binary-search
- Insertion-, Selection-, Merge-, Quick-, and Heap-sort

- Useful ADTs (& implementations)
- Stacks & Queues
 Arrays & lists
- Priority Queues • Heaps
- Array of queues
- Sets & Dictionaries
- Bit vectors (for Sets)
 Arrays & lists
- . Hashing & Hashtables
- BSTs (& balanced BSTs)
- · Graphs...

Overview of Graphs

- Mathematical definition of a graph (directed, undirected)
- Representations
- Adjacency matrix
- Adjacency list
- Topological sort
- Coloring & planarity
- Searching (BFS & DFS)
- Dijkstra's shortest path algorithm
- Minimum Spanning Trees (MSTs)
 - Prim's algorithm (growing a single tree)
 - Kruskal's algorithm (build a forest by adding edges in order)

Some Unsolved **Problems**

Complexity of Bounded-Degree Euclidean MST

- The Euclidean MST (Minimum Spanning Tree) problem:
- Given n points in the plane, determine the MST
- Can be solved in O(n log n) time by first building the

- Bounded-degree version:
 - Given n points in the plane. determine the MST where
 - each vertex has degree ≤ d

 Known to be NP-hard for d=3 [Papadimitriou & Vazirani 84]
 - O(n log n) algorithm for d=5 or greater
 - Can show Euclidean MST has degree < 5
 - Unknown for k=4

10

Complexity of Euclidean MST in Rd

- Given n points in dimension d, determine the MST
- Is there an algorithm with runtime close to the $\Omega(n \log n)$ lower bound?
- · Can solve in time O(n log n) for d=2
- For large d, it appears that runtime approaches O(n2)
- Best algorithms for general graphs run in time linear in m = number of edges
 - But for Euclidean distances on points, the number of edges is

n-by-n table of numbers?

O(n²) Time for X+Y Sorting?

How long does it take to a sort an

- \bullet O(n²log n) because there are n^2 numbers in the table
- What if it's an addition table?
 - Shouldn't it be easier to sort than an arbitrary set of n² numbers?

+	1	3	5	8
2	3	5	7	10
10	11	13	15	18
12	13	15	17	20
14	15	17	19	22

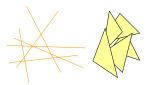
- There is a technique that uses just O(n²) comparisons [Fredman 76]
 - But it uses O(n²log n) time to decide which comparisons to use [Lambert 92]
- · This problem is closely related to the problem of sorting the vertices of a line arrangement

12

11

3SUM in Subquadratic Time?

- Given a set of n integers, are there three that sum to zero?
 - O(n²) algorithms are easy (e.g., use a hashtable)
 - Are there better algorithms?



- This problem is closely related to many other problems [Gajentaan & Overmars 95]
 - Given n lines in the plane, are there 3 lines that intersect in a
 - Given n triangles in the plane, does their union have a hole?

13

Great-Circle Graph 3-Colorable?

- Build a graph by drawing great-circles on a sphere
 - Create a vertex for each intersection
 - Assume no three great circles intersect in a point
- Is the resulting graph 3-colorable?
- All arrangements for up to 11 great circles have been verified as 3-colorable

 For *general* circles on the sphere (or for circles on the plane) the graph can require 4 colors

14

The Big Question: Is P=NP?

- P is the class of problems that can be solved in polynomial time
- These problems are considered
 tractable
- Problems that are not in P are considered intractable
- NP represents problems that, for a given solution, the solution can be checked in polynomial time
 - But finding the solution may be hard
- For ease of comparison, problems are usually stated as yes-or-no questions

- Examples
- Given a weighted graph G and a bound k, does G have a spanning tree of weight at most k?
 - This is in P because we have an algorithm for the MST with runtime O(m + n log n)
- Given graph G, does G have a cycle that visits all vertices?
 This is in NP because, given a
 - This is in NP because, given a possible solution, we can check in polynomial time that it's a cycle and that it visits all vertices

15

Current Status: P vs. NP

- It's easy to show that $P \subseteq NP$
- Most researchers believe that P ≠ NP
 - But at present, no proof
 - We do have a large collection of NP-complete problems
 - If any NP-complete problem has a polynomial time algorithm, then they all do
- A problem B is NP-complete if
- 1. it is in NP
- 2. any other problem in NP reduces to it efficiently
- Thus by making use of an imaginary fast subroutine for B, any problem in NP could be solved in polynomial time
- the Boolean satisfiability problem is NP-complete [Cook 1971]
- many useful problems are NPcomplete [Karp 1972]
- By now thousands of problems are known to be NP-complete

..

Some NP-Complete Problems

- Graph coloring: Given graph G and bound k, is G k-colorable?
- Planar 3-coloring: Given planar graph G, is G 3-colorable?
- Traveling salesperson: Given weighted graph G and bound k, is there a cycle of cost ≤ k that visits each vertex exactly once?
- Hamiltonian cycle: Give graph G, is there a cycle that visits each vertex exactly once?
- Knapsack: Given a set of items i with weights w_i and values v_i, and numbers W and V, does there exist a subset of at most W items whose total value is at least V?
- What if you really need an algorithm for an NP-complete problem?
 - Some special cases can be solved in polynomial time
 - If you're lucky, you have such a special case
 - Otherwise, once a problem is shown to be NP-complete, the best strategy is to start looking for an approximation
- For a while, a new proof showing a problem NP-complete was
- Nowadays, no one is interested unless the result is somehow unexpected

Good luck on the final!

Thanks for an enjoyable semester!

Have a great summer!

17