
Threads and Concurrency

Lecture 23 – CS211 – Spring 2007

2

Announcements

• ACSU final general meeting of the year
– Wed 4/25, 5pm, Upson Lounge (117)
– Speaker: Gun Sirer on P2P networks
– Free food!

• Online course evaluations are available from
now until next Monday noon – please visit
http://www.engineering.cornell.edu/CourseEval/

3

What is a Thread?

• A separate process that can perform a
computational task independently and
concurrently with other threads

– Most programs have only one thread
– GUIs have a separate thread, the event

dispatching thread
– A program can have many threads
– You can create new threads in Java

4

What is a Thread?

• In reality, threads are an illusion
– The processor shares its time among all

the active threads
– Implemented with support from underlying

operating system or virtual machine
– Gives the illusion of several threads

running simultaneously

5

Concurrency (aka Multitasking)

• Refers to situations in which several
threads are running simultaneously

• Special problems arise
– race conditions
– deadlock

6

• The operating system
provides support for
multitasking

• In reality there is one
processor doing all this

• But this is an illusion too –
at the hardware level, lots
of multitasking
– memory subsystem
– video controller
– buses
– instruction prefetching

7

Threads in Java

• Threads are instances of the class Thread
– can create as many as you like

• The Java Virtual Machine permits multiple
concurrent threads
– initially only one thread (executes main)

• Threads have a priority
– higher priority threads are executed preferentially
– a newly created Thread has initial priority equal

to the thread that created it (but can change)
8

Creating a new Thread (Method 1)
class PrimeThread extends Thread {

long a, b;

PrimeThread(long a, long b) {
this.a = a; this.b = b;

}

public void run() {
//compute primes between a and b
...

}
}

PrimeThread p = new PrimeThread(143, 195);
p.start();

overrides
Thread.run()

can call run() directly –
calling thread will run it

or, can call start()
– will run run() in new thread

9

Creating a new Thread (Method 2)
class PrimeRun implements Runnable {

long a, b;

PrimeRun(long a, long b) {
this.a = a; this.b = b;

}

public void run() {
//compute primes between a and b
...

}
}

PrimeRun p = new PrimeRun(143, 195);
new Thread(p).start();

10

Example
Thread[Thread-0,5,main] 0
Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9
Thread[Thread-0,5,main] 1
Thread[Thread-0,5,main] 2
Thread[Thread-0,5,main] 3
Thread[Thread-0,5,main] 4
Thread[Thread-0,5,main] 5
Thread[Thread-0,5,main] 6
Thread[Thread-0,5,main] 7
Thread[Thread-0,5,main] 8
Thread[Thread-0,5,main] 9

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

public void run() {
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

}

11

Example
Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9
Thread[Thread-0,4,main] 0
Thread[Thread-0,4,main] 1
Thread[Thread-0,4,main] 2
Thread[Thread-0,4,main] 3
Thread[Thread-0,4,main] 4
Thread[Thread-0,4,main] 5
Thread[Thread-0,4,main] 6
Thread[Thread-0,4,main] 7
Thread[Thread-0,4,main] 8
Thread[Thread-0,4,main] 9

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

public void run() {
currentThread().setPriority(4);
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

}

12

Example
Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main] 5
Thread[Thread-0,6,main] 0
Thread[Thread-0,6,main] 1
Thread[Thread-0,6,main] 2
Thread[Thread-0,6,main] 3
Thread[Thread-0,6,main] 4
Thread[Thread-0,6,main] 5
Thread[Thread-0,6,main] 6
Thread[Thread-0,6,main] 7
Thread[Thread-0,6,main] 8
Thread[Thread-0,6,main] 9
Thread[main,5,main] 6
Thread[main,5,main] 7
Thread[main,5,main] 8
Thread[main,5,main] 9

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

public void run() {
currentThread().setPriority(6);
for (int i = 0; i < 10; i++) {

System.out.format("%s %d\n",
Thread.currentThread(), i);

}
}

}

13

Example
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
waiting...
running...
done

public class ThreadTest extends Thread {
static boolean ok = true;

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {

System.out.println("waiting...");
yield();

}
ok = false;

}

public void run() {
while (ok) {

System.out.println("running...");
yield();

}
System.out.println("done");

}
}

allows other waiting
threads to run

14

Stopping Threads

• Threads normally terminate by returning
from their run method

•stop(), interrupt(), suspend(),
destroy(), etc. all deprecated
– can leave application in an inconsistent state
– inherently unsafe
– don't use them
– instead, set a variable telling the thread to stop

itself

15

Daemon and Normal Threads

• A thread can be daemon or normal
– the initial thread (the one that runs main) is normal

• Daemon threads are used for minor or ephemeral
tasks (e.g. timers, sounds)

• A thread is initially a daemon iff its creating thread is
– but this can be changed

• The application halts when either
– System.exit(int) is called, or
– all normal (non-daemon) threads have terminated

16

Race Conditions

• A race condition can arise when two or more
threads try to access data simultaneously

• Thread B may try to read some data while
thread A is updating it
– updating may not be an atomic operation
– thread B may sneak in at the wrong time and

read the data in an inconsistent state

• Results can be unpredictable!

17

Example – A Lucky Scenario
private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() ⇒ false
2. thread A pops ⇒ stack is now empty
3. thread B tests stack.isEmpty() ⇒ true
4. thread B just returns – nothing to do

18

Example – An Unlucky Scenario
private Stack<String> stack = new Stack<String>();

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

}

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack.isEmpty() ⇒ false
2. thread B tests stack.isEmpty() ⇒ false
3. thread A pops ⇒ stack is now empty
4. thread B pops ⇒ Exception!

19

Solution – Locking
private Stack<String> stack = new Stack<String>();

public void doSomething() {
synchronized (stack) {

if (stack.isEmpty()) return;
String s = stack.pop();

}
//do something with s...

}

• Put critical operations in a synchronized block
• The stack object acts as a lock
• Only one thread can own the lock at a time

synchronized block

20

Solution – Locking

public void doSomething() {
synchronized (this) {

...
}

}

public synchronized void doSomething() {
...

}

•You can lock on any object, including this

is equivalent to

21

File Locking

• In file systems, if two or more processes
could access a file simultaneously, this
could result in data corruption

• A process must open a file to use it – gives
exclusive access until it is closed

• This is called file locking – enforced by the
operating system

• Same concept as synchronized(obj) in
Java

22

Deadlock
•The downside of locking – deadlock

•A deadlock occurs when two or more
competing threads are waiting for the other
to relinquish a lock, so neither ever does

•Example:
– thread A tries to open file X, then file Y
– thread B tries to open file Y, then file X
– A gets X, B gets Y
– Each is waiting for the other forever

23

wait/notify

•A mechanism for event-driven activation of
threads

•Animator thread and GUI event-
dispatching thread in A5 interact via
wait/notify

24

wait/notify
boolean isRunning = true;

public synchronized void run() {
while (true) {

while (isRunning) {
//do one step of simulation

}
try {

wait();
} catch (InterruptedException ie) {}
isRunning = true;

}
}

public void stopAnimation() {
animator.isRunning = false;

}

public void restartAnimation() {
synchronized(animator) {

animator.notify();
}

}

relinquishes lock on animator –
awaits notification

notifies processes waiting
for animator lock

animator:

