Threads and Concurrency

Lecture 23 — CS211 — Spring 2007

Announcements

« ACSU final general meeting of the year
— Wed 4/25, 5pm, Upson Lounge (117)
— Speaker: Gun Sirer on P2P networks
— Free food!

¢ Online course evaluations are available from
now until next Monday noon — please visit

What is a Thread?

A separate process that can perform a
computational task independently and
concurrently with other threads

— Most programs have only one thread

— GUIs have a separate thread, the event
dispatching thread

— A program can have many threads

—You can create new threads in Java

What is a Thread?

* In reality, threads are an illusion
— The processor shares its time among all
the active threads
— Implemented with support from underlying
operating system or virtual machine
— Gives the illusion of several threads
running simultaneously

Concurrency (aka Multitasking)

 Refers to situations in which several
threads are running simultaneously

» Special problems arise
—race conditions
— deadlock

» The operating system
provides support for
multitasking

« In reality there is one
processor doing all this

« But this is an illusion too —
at the hardware level, lots
of multitasking

—memory subsystem
—video controller
—buses

—instruction prefetching

Threads in Java

* Threads are instances of the class Thread
—can create as many as you like

» The Java Virtual Machine permits multiple

concurrent threads
—initially only one thread (executes main)

» Threads have a priority
—higher priority threads are executed preferentially
—a newly created Thread has initial priority equal
to the thread that created it (but can change)

Creating a new Thread (Method 1)

class PrimeThread extends Thread {

long a, b;
this.a = a; this.b = b;
3

public void runQ)
//compute primes B

PrimeThread(long a, long b) {

Thread.runQ)
ween a and b

can call run() directly —
calling thread will run it

overrides

p.start(Q);

PrimeThread p = new PrimeThread(143, 195);

or, can call start()
—will run run) in new thread

Example

public class ThreadTest extends Thread {

public static void main(String[] args) {
new ThreadTest().start();
for (int i = 0; i < 10; i++) {
System.out.format("%s %d\n",
Thread.currentThread(), i);
3
3

public void runQ) {
for (int i = 0; i < 105 i++) {
System.out.format("%s %d\n",
Thread.currentThread(), i);

Thread[Thread-0,5,main] 0
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[main,5,main]
Thread[Thread-0,5,main]
Thread[Thread-0,5,main]
Thread[Thread-0,5,main]
Thread[Thread-0,5,main]
Thread[Thread-0,5,main]
Thread[Thread-0,5,main]
Thread[Thread-0,5,main]
Thread[Thread-0,5,main]
Thread[Thread-0,5,main]

CONOUAWNRO

©CONOUAWNER

10

7
Creating a new Thread (Method 2)
class PrimeRun implements Runnable {
long a, b;
PrimeRun(long a, long b) {
this.a = a; this.b = b;
}
public void runQ) {
//compute primes between a and b
}
3
PrimeRun p = new PrimeRun(143, 195);
new Thread(p).start();
9
Example
Thread[main,5,main] O
public class ThreadTest extends Thread { Thread[main,5,main] 1
Thread[main,5,main] 2
public static void main(String[] args) { 3
new ThreadTest().start(); 4
for (int i =0; i < 10; i++) { 5
System.out.format(""%s %d\n", 6
Thread.currentThread(), i); Thread[main,5,main] 7
} Thread[main,5,main] 8
} Thread[main,5,main] 9
Thread[Thread-0,4,main] 0
public void runQ) { Thread[Thread-0,4,main] 1
currentThread() .setPriority(4); Thread[Thread-0,4,main] 2
for (int i = 0; i < 10; i++) { Thread[Thread-0,4,main] 3
System.out.format("%s %d\n", Thread[Thread-0,4,main] 4
Thread.currentThread(), i); Thread[Thread-0,4,main] 5
} Thread[Thread-0,4,main] 6
H Thread[Thread-0,4,main] 7
H Thread[Thread-0,4,main] 8
Thread[Thread-0,4,main] 9

Example

public class ThreadTest extends Thread {

public static void main(String[] args) {

new ThreadTest().start();
for (int i =0; i < 10; i++) {
System.out.format("%s %d\n",

Thread.currentThread(), i);

3
3

public void runQ) {
currentThread() .setPriority(6);
for (int i =0; i < 10; i++) {
System.out.format(“%s %d\n",
Thread.currentThread(), i);

11

Thread[main,5,main] 0
Thread[main,5,main] 1
Thread[main,5,main] 2
Thread[main,5,main] 3
Thread[main,5,main] 4
Thread[main,5,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[Thread-0,6,main]
Thread[main,5,main] 6

Thread[main,5,main] 7

Thread[main,5,main] 8

Thread[main,5,main] 9

o

©CONOUAWNER O

12

Example

waiting...
public class ThreadTest extends Thread { running. ..
static boolean ok = true; waiting. ..
running. ..
public static void main(String[] args) { || waiting...
new ThreadTest().start(); running. ..
for (int i = 0; i < 10; i++) { waiting...
System.out.printIn("waiting..."); running. ..
yieldQ; waiting...
3} " running. ..
ok = false; allows other waiting | waiting. ..
3 threads to run running. . .
waiting. ..
public void runQ { running. ..
while (ok) { waiting...
System.out.printIn(running..."); running. ..
yieldQ; waiting...
running. ..
System.out.printin(done™); waiting...
running. ..

} done

13

Stopping Threads

¢ Threads normally terminate by returning
from their run method

estop(), interrupt(), suspend(),
destroy(), etc. all deprecated
—can leave application in an inconsistent state
—inherently unsafe
—don't use them
—instead, set a variable telling the thread to stop
itself

14

Daemon and Normal Threads

A thread can be daemon or normal
— the initial thread (the one that runs main) is normal

« Daemon threads are used for minor or ephemeral
tasks (e.g. timers, sounds)

« Athread is initially a daemon iff its creating thread is
— but this can be changed

* The application halts when either
— System.exit(int) is called, or

— all normal (non-daemon) threads have terminated

15

Race Conditions

A race condition can arise when two or more
threads try to access data simultaneously

» Thread B may try to read some data while
thread A is updating it
—updating may not be an atomic operation
—thread B may sneak in at the wrong time and
read the data in an inconsistent state

* Results can be unpredictable!

16

Example — A Lucky Scenario

private Stack<String> stack = new Stack<String>(Q);

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.popQ);
//do something with s...

>

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack. isempty() — false
2. thread A pops = stack is now empty
3. thread B tests stack. isEmpty() = true

4. thread B just returns — nothing to do
17

Example — An Unlucky Scenario

private Stack<String> stack = new Stack<String>(Q);

public void doSomething() {
if (stack.isEmpty()) return;
String s = stack.pop();
//do something with s...

¥

Suppose threads A and B want to call doSomething(),
and there is one element on the stack

1. thread A tests stack. isEmpty() — false
2. thread B tests stack. isempty() — false
3. thread A pops = stack is now empty

4. thread B pops = Exception!

18

Solution — Locking

private Stack<String> stack = new Stack<String>();

public void doSomething() {
synchronized (stack) {
if (stack.isEmpty()) return;
String s = stack.popQ);

T
/7do something with SKM
b3
lock

Lsynchron 1zed bl

« Put critical operations in a synchronized block
* The stack object acts as a lock
* Only one thread can own the lock at a time

19

Solution — Locking

*You can lock on any object, including this

public synchronized void doSomething() {

b

is equivalent to

public void doSomething() {
synchronized (this) {

3
3

20

File Locking

« In file systems, if two or more processes
could access a file simultaneously, this
could result in data corruption

« A process must open a file to use it — gives
exclusive access until it is closed

« This is called file locking — enforced by the
operating system

* Same concept as synchronized(obj) in
Java

21

Deadlock
*The downside of locking — deadlock

* A deadlock occurs when two or more
competing threads are waiting for the other
to relinquish a lock, so neither ever does

*Example:
—thread A tries to open file X, then file Y
—thread B tries to open file Y, then file X
—Agets X, Bgets Y
—Each is waiting for the other forever

22

wait/notify

* A mechanism for event-driven activation of
threads

eAnimator thread and GUI event-

dispatching thread in A5 interact via
wait/notify

23

wait/notify

animator:

boolean isRunning = true;

public synchronized void run() {
while (true) {
while (isRunning) {
//do one step of simulation

1 c Aéirelinquishes lock on animatorj
= A o
oG awaits notification

} catcrj (InterruptedException ie) {}
isRunning = true; public void stopAnimation() {
3 ¥ animator.isRunning = false;

3

public void restartAnimation() {
synchronized(animator) {
animator.notify(Q;

notifies processes waiting
for animator lock

24

