Balanced
Search Trees

Lecture 22
CS211 — Spring 2007

Prelim tonight!

Some Search Structures

« Sorted Arrays
— Advantages
« Search in O(log n) time (binary search)
— Disadvantages
» Need to know size in advance
« Insertion, deletion O(n) — need to shift elements
e Lists
— Advantages
» No need to know size in advance
« Insertion, deletion O(1) (not counting search time)
— Disadvantages
« Search is O(n), even if list is sorted

Balanced Search Trees

* Best of both!
— Search, insert, delete in O(log n) time
— No need to know size in advance

 Several flavors
— AVL trees, 2-3 trees, red-black trees,
skip lists, random treaps, ...

Review — Binary Search Trees

« Every node has a left child, a right
child, both, or neither

« Data elements are drawn from a totally
ordered set (e.g., Comparable)

« Every node contains one data element

« Data elements are ordered in inorder

A Binary Search Tree

(29
(8] (47
O @@ @ @9
13 54 (93
@9

Binary Search Trees

In any subtree:

« all elements
smaller than the
element at the
root are in the left
subtree

« all elements
larger than the
element at the
root are in the
right subtree

Search

To search for an element x:
« if tree is empty, return false
« if x = object at root, return true
« If X < object at root, search left subtree
« If x > object at root, search right subtree

Search

Example: search for 13

Search

Search

Search

Search Search

(29
(8] (47
O @ @ @
& 54 (9D

@9

Search Insertion
boolean treeSearch(Comparable x, To insert an element x:
TreeNode t) { « search for x — if there, just return
it (t == null) return false; « when arrive at a leaf y, make x a child of y
switch (x.compareTo(t.data)) { — left child if x < y

case 0: return true; //found — right child if x >y
case 1: return treeSearch(x, t.right);
default: return treeSearch(x, t.left);

3
}

Insertion Insertion

Example: insert 15

Insertion

Insertion

Insertion

Insertion

(29
(8] (47

O @ @ @
& (4 (92
CENC

Insertion

void insert(Comparable x, TreeNode t) {
if (x.compareTo(t.data) == 0) return;
if (x.compareTo(t.data) < 0) {
if (t.left = null) insert(x,t.left);
else t.left = new TreeNode(x);
} else {
if (t.right = null) insert(x,t.right);
else t.right = new TreeNode(Xx);
b
bs

Deletion

To delete an element x:
» remove X from its node — this creates a hole
« if the node was a leaf, just delete it
« find greatest y less than x in the left subtree
(or least y greater than x in the right subtree),
move it to x's node
« this creates a hole where y was — repeat

Deletion

To find least y greater than x:
« follow left children as far as possible in right subtree

Deletion

To find greatest y less than x:
« follow right children as far as possible in left subtree

Deletion

Example: delete 25

Deletion

Deletion

O (47
O @ @ #9
13 4 &
@3

Deletion

Deletion

Deletion

Deletion

Deletion

29
(8] (47

O B @ @
(4 (92
@9

Deletion

29
O (47
O ©® @ &
4 &
@3

Deletion

Example: delete 47

Deletion Deletion
(29) (29)
(6) (67
» @ @ @ L ®W @ @
(54 (o1 (54 (o1
(48) (48)
Deletion Deletion

Deletion Deletion

Example: delete 29

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion

29

Deletion

29
(8] 43
O ® (89
&y @

Observation

* These operations take time proportional to the
height of the tree (length of the longest path)
» O(n) if tree is not sufficiently balanced

Bad case for search,
insertion, and
deletion — essentially
like searching a list

Solution

Try to keep the tree balanced (all paths
roughly the same length)

Balanced Trees

* Size is exponential in height
* Height = log,(size)
* Search, insert, delete will be O(log n)

Creating a Balanced Tree

Creating one from a sorted array:
* Find the median, place that at the root
* Recursively form the left subtree from the
left half of the array and the right subtree
from the right half of the array

| 1|6 [13]20|48]54]80] (20)

OMRZ
S @ ®

Keeping the Tree Balanced

« Insertions and deletions can put tree out
of balance — we may have to rebalance it
» Can we do this efficiently?

AVL Trees

Adelson-Velsky and Landis, 1962

AVL Invariant:

The difference in height between the
left and right subtrees of any node is
never more than one

An AVL Tree

+ Nonexistent @
consioredto (6] @)
have height -1

* Note t_hat paths e @ @ @
manbymre @ @) (9 (9D

than 1 (e.g.,
paths to 2, 48) @

AVL Trees are Balanced

The AVL invariant implies that:
« Size is at least exponential in height
e n> o9 where ¢ = (1 +V5)/2 ~ 1.618,
the golden ratio!

* Height is at most logarithmic in size
ed<logn/log ¢ ~1.44logn

AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right
subtrees of any node is never more than one

To see that n > ¢4, look at the smallest
possible AVL trees of each height

Ao A

AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right
subtrees of any node is never more than one

To see that n > ¢4, look at the smallest
possible AVL trees of each height

Ao A Ay

AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right
subtrees of any node is never more than one

To see that n > ¢4, look at the smallest
possible AVL trees of each height

Ao A Ay

Aq

AVL Trees are Balanced

Ag=1
A =2
Ag=Ags+Ag,+1, d=2

AVL Trees are Balanced

Ag=1
A =2
Ag=Agq+Ag,+1, d=2

1 2 4 7 12 20 33 54 88

AVL Trees are Balanced

Ap=1
A, =2
Aj=Ay, +Ay,+1, d=2

1 2 4 7 12 20 33 54 88

112 35 8 13 21 34 55
The Fibonacci sequence

AVL Trees are Balanced

Ay=1
A =2
Ag=Ay +Ag,+1, d22

NN NN

13 21 34 55
Ay = Fgp—1 = O(eY)

Rebalancing

¢ Insertion and deletion can invalidate
the AVL invariant
* May have to rebalance

Rebalancing
Rotation

« A local rebalancing operation

« Preserves inorder ordering of the elements

» The AVL invariant can be reestablished with at most
O(log n) rotations up and down the tree

Rebalancing

Example: delete 27

(8) (47
@ @ @@ @9
13 (59
@9

>

Rebalancing

(29
(6]

(47
@ @ @& @
13 (9 @2
@9

Rebalancing

Rebalancing

Rebalancing

(25)
(8)

)
@ 9 @ &
& @

@0

9

Rebalancing

(29
(6] (59
@ @@ @ &

B @ @ @

2-3 Trees 2-3 Trees

Another balanced tree scheme
« Data stored only at the leaves
* Ordered left-to-right

« All paths of the same length

R . smallest 2-3 tree of heightd = 3 largest 2-3 tree of height d = 3
« Every non-leaf has either 2 or 3 children 24 = 8 data elements 34 = 27 data elements
« Each internal node has smallest, largest
element in its subtree (for searching) « number of elements satisfies 2¢ < n < 3¢
* height satisfies d < log n
Insertion in 2-3 Trees Insertion in 2-3 Trees
want to insert new element here
Insertion in 2-3 Trees Insertion in 2-3 Trees
want to insert new element here

Insertion in 2-3 Trees

SYISVe

Insertion in 2-3 Trees

YNV

Insertion in 2-3 Trees

YAV

Insertion in 2-3 Trees

Deletion in 2-3 Trees

SYISYe

|Want to delete this element |

Deletion in 2-3 Trees

YISYe

Deletion in 2-3 Trees

1

want to delete this element

Deletion in 2-3 Trees

If neighbor has 3 children, borrow one

Deletion in 2-3 Trees

If neighbor has 3 children, borrow one

Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor

Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

K NA

This may cascade up the tree!

Conclusion

Balanced search trees are good
« Search, insert, delete in O(log n) time
* No need to know size in advance
» Several different versions
— AVL trees, 2-3 trees, red-black trees, skip
lists, random treaps, Huffman trees, ...
— find out more about them in CS482

