

Balanced Search Trees

Lecture 22 CS211 – Spring 2007

Prelim tonight!

Some Search Structures

- Sorted Arrays
 - Advantages
 - Search in O(log n) time (binary search)
 - Disadvantages
 - Need to know size in advance
 - Insertion, deletion O(n) need to shift elements
- Lists
 - Advantages
 - No need to know size in advance
 - Insertion, deletion O(1) (not counting search time)
 - Disadvantages
 - Search is O(n), even if list is sorted

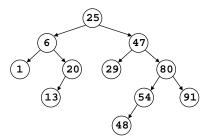
Balanced Search Trees

- Best of both!
 - Search, insert, delete in O(log n) time
 - No need to know size in advance
- Several flavors
 - AVL trees, 2-3 trees, red-black trees, skip lists, random treaps, ...

Review - Binary Search Trees

- Every node has a *left child*, a *right child*, both, or neither
- Data elements are drawn from a totally ordered set (e.g., Comparable)
- Every node contains one data element
- Data elements are ordered in *inorder*

A Binary Search Tree

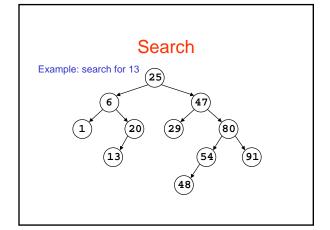


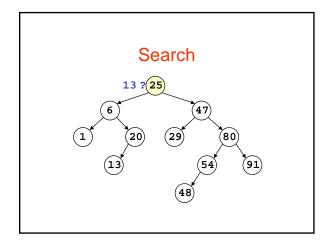
Binary Search Trees In any subtree: • all elements smaller than the element at the root are in the left subtree • all elements larger than the element at the root are in the right subtree 13 54 91

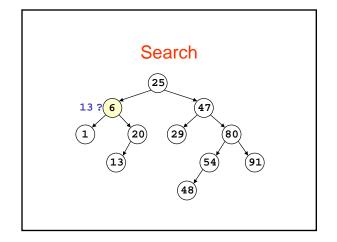
Search

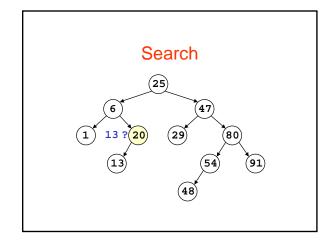
To search for an element x:

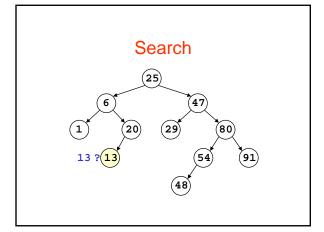
- if tree is empty, return false
- if x = object at root, return true
- If x < object at root, search left subtree
- If x > object at root, search right subtree

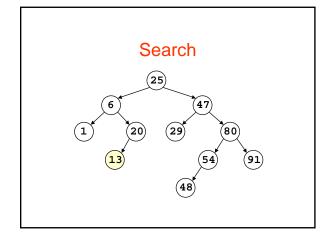












Search

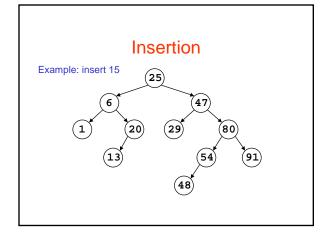
```
boolean treeSearch(Comparable x,
                     TreeNode t) {
  if (t == null) return false;
switch (x.compareTo(t.data)) {
    case 0: return true; //found
    case 1: return treeSearch(x, t.right);
    default: return treeSearch(x, t.left);
 }
```

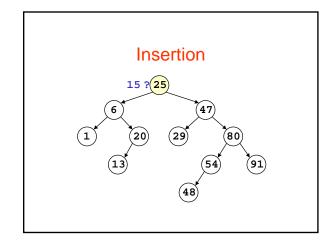
Insertion

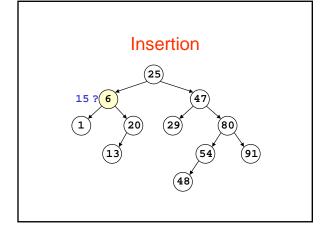
To insert an element x:

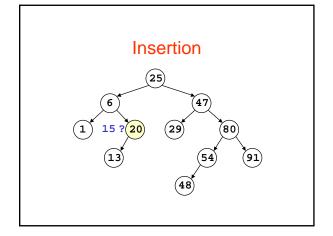
- search for x if there, just return
- when arrive at a leaf y, make x a child of y

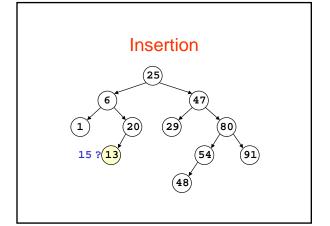
 - left child if x < yright child if x > y

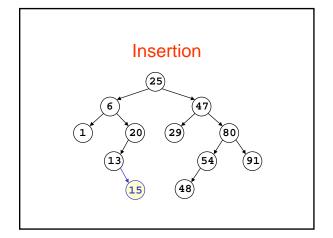












Insertion

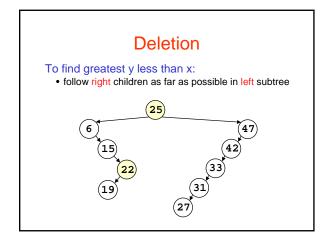
```
void insert(Comparable x, TreeNode t) {
  if (x.compareTo(t.data) == 0) return;
  if (x.compareTo(t.data) < 0) {
    if (t.left != null) insert(x,t.left);
    else t.left = new TreeNode(x);
  } else {
    if (t.right != null) insert(x,t.right);
    else t.right = new TreeNode(x);
  }
}</pre>
```

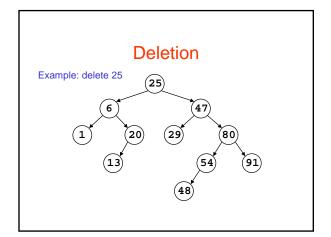
Deletion

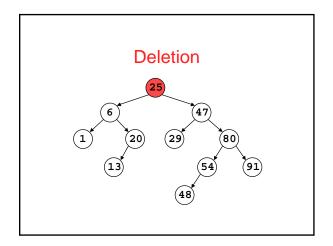
To delete an element x:

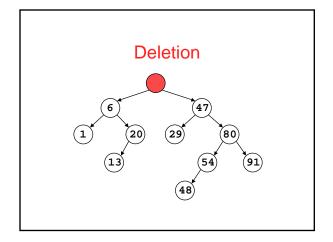
- remove x from its node this creates a hole
- if the node was a leaf, just delete it
- find greatest y less than x in the left subtree (or least y greater than x in the right subtree), move it to x's node
- this creates a hole where y was repeat

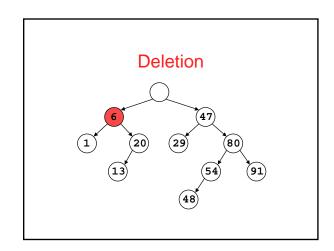
Deletion To find least y greater than x: • follow left children as far as possible in right subtree (25) (47) (42) (22) (33) (31)

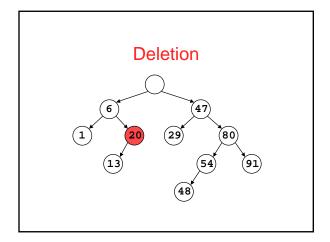


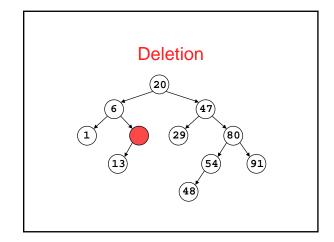


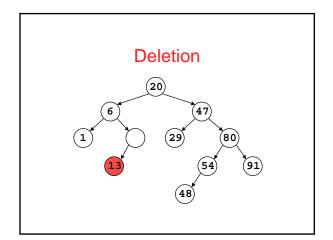


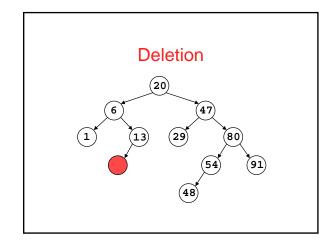


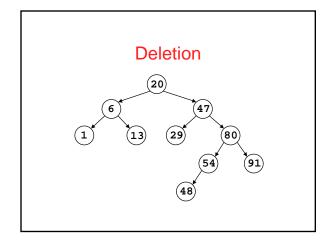


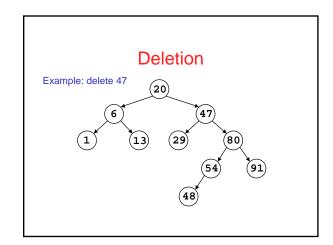


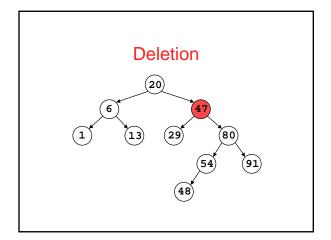


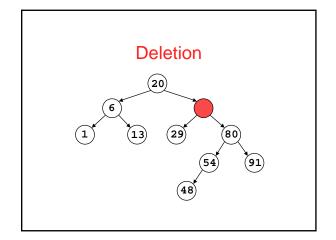


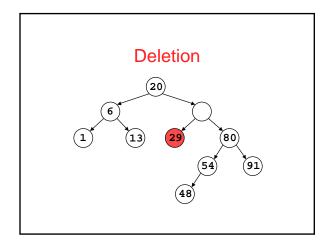


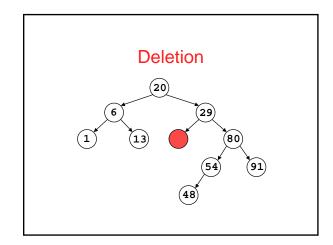


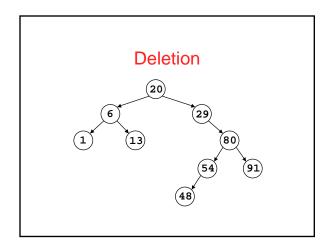


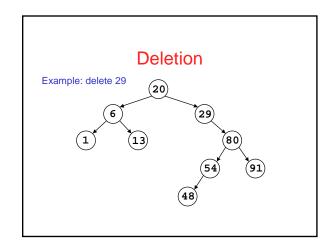


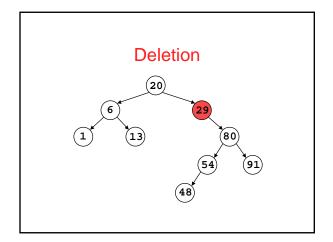


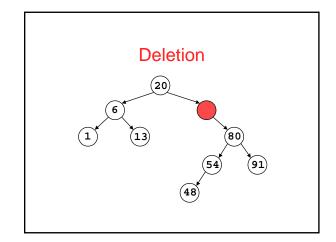


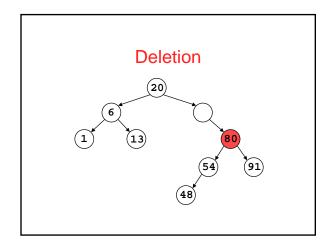


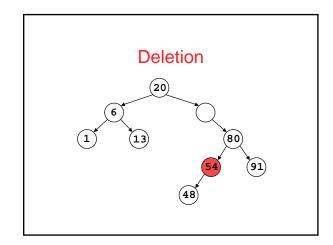


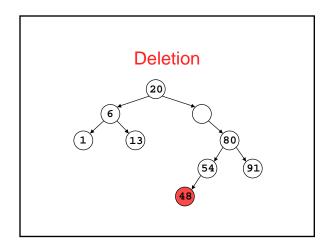


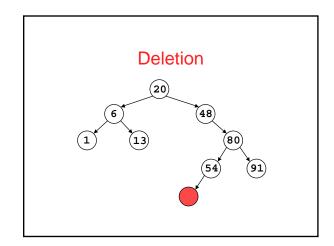












Deletion (20)

Observation • These operations take time proportional to the height of the tree (length of the longest path)

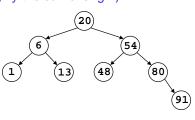
• O(n) if tree is not sufficiently balanced

Bad case for search, insertion, and deletion - essentially like searching a list



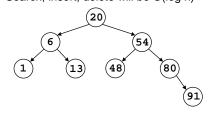
Solution

Try to keep the tree balanced (all paths roughly the same length)



Balanced Trees

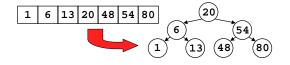
- Size is exponential in height
- Height = $log_2(size)$
- Search, insert, delete will be O(log n)



Creating a Balanced Tree

Creating one from a sorted array:

- Find the median, place that at the root
- Recursively form the left subtree from the left half of the array and the right subtree from the right half of the array



Keeping the Tree Balanced

- Insertions and deletions can put tree out of balance - we may have to rebalance it
- Can we do this efficiently?

AVL Trees

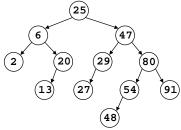
Adelson-Velsky and Landis, 1962

AVL Invariant:

The difference in height between the left and right subtrees of any node is never more than one

An AVL Tree

- Nonexistent children are considered to have height -1
- Note that paths can differ in length by more than 1 (e.g., paths to 2, 48)



AVL Trees are Balanced

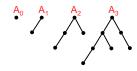
The AVL invariant implies that:

- Size is at least exponential in height
 - n $\geq \varphi^d$, where $\varphi = (1 + \sqrt{5})/2 \sim 1.618$, the golden ratio!
- Height is at most logarithmic in size
 - $d \le log n / log \varphi \sim 1.44 log n$

AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right subtrees of any node is never more than one

To see that $n \ge \varphi^d$, look at the *smallest* possible AVL trees of each height



AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right subtrees of any node is never more than one

To see that $n \ge \varphi^d$, look at the *smallest* possible AVL trees of each height

AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right subtrees of any node is never more than one

To see that $n \ge \varphi^d$, look at the *smallest* possible AVL trees of each height

AVL Trees are Balanced

$$\begin{split} &A_0=1\\ &A_1=2\\ &A_d=A_{d-1}+A_{d-2}+1,\ d\geq 2 \end{split}$$

AVL Trees are Balanced

$$\begin{aligned} &A_0=1\\ &A_1=2\\ &A_d=A_{d-1}+A_{d-2}+1,\ d\geq 2\\ &1\quad 2\quad 4\quad 7\quad 12\quad 20\quad 33\quad 54\quad 88\quad ... \end{aligned}$$

AVL Trees are Balanced

$$\begin{array}{l} A_0=1\\ A_1=2\\ A_d=A_{d-1}+A_{d-2}+1,\ d\geq 2\\ \\ 1\ 2\ 4\ 7\ 12\ 20\ 33\ 54\ 88\ ...\\ \\ 1\ 1\ 2\ 3\ 5\ 8\ 13\ 21\ 34\ 55\ ...\\ \\ The\ Fibonacci\ sequence \end{array}$$

AVL Trees are Balanced

$$\begin{array}{l} A_0=1\\ A_1=2\\ A_d=A_{d-1}+A_{d-2}+1,\ d\geq 2\\ \\ 1\ 2\ 4\ 7\ 12\ 20\ 33\ 54\ 88\ ...\\ 1\ 1\ 2\ 3\ 5\ 8\ 13\ 21\ 34\ 55\ ...\\ A_d=F_{d+2}-1=O(\phi^d) \end{array}$$

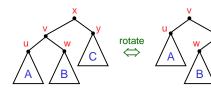
Rebalancing

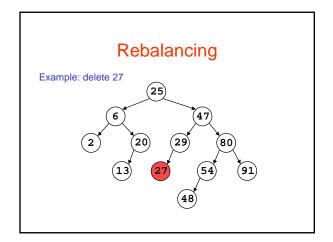
- Insertion and deletion can invalidate the AVL invariant
- May have to rebalance

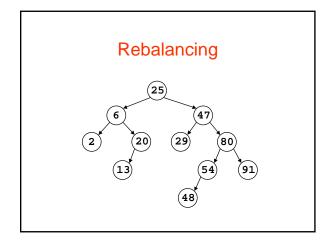
Rebalancing

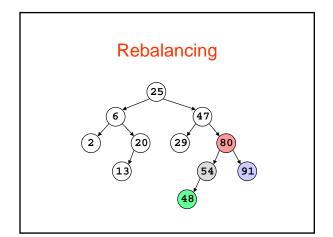
Rotation

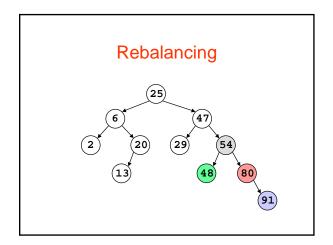
- A local rebalancing operation
- Preserves inorder ordering of the elements
- The AVL invariant can be reestablished with at most O(log n) rotations up and down the tree



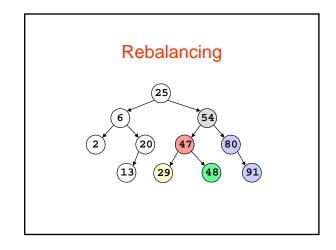








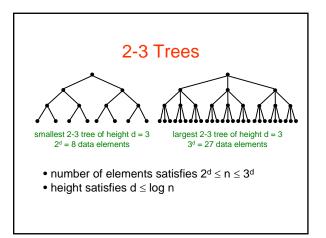


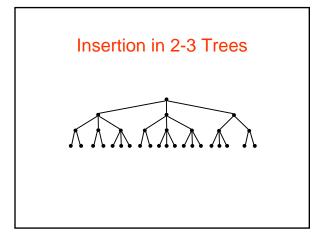


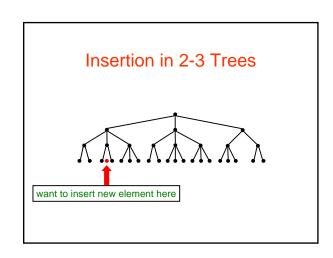
2-3 Trees

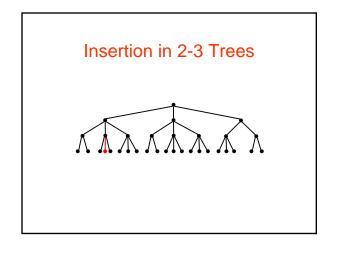
Another balanced tree scheme

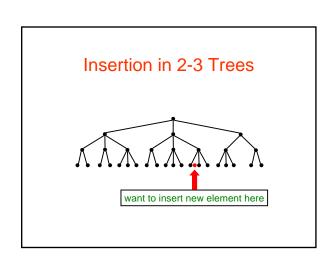
- Data stored only at the leaves
- Ordered left-to-right
- All paths of the same length
- Every non-leaf has either 2 or 3 children
- Each internal node has smallest, largest element in its subtree (for searching)



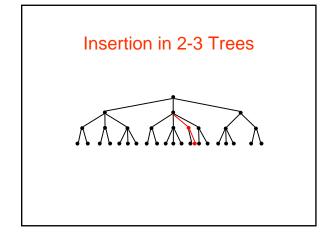


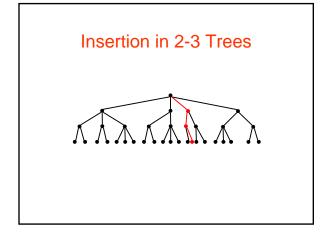


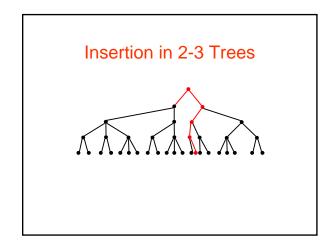


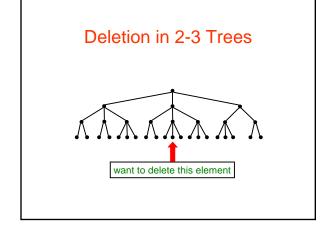


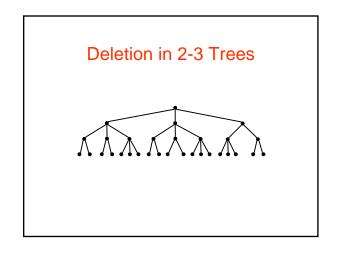
Insertion in 2-3 Trees

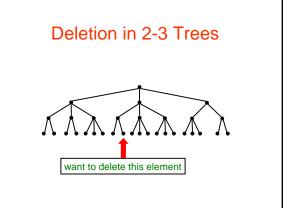


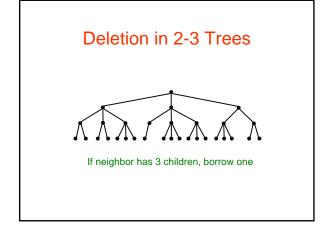


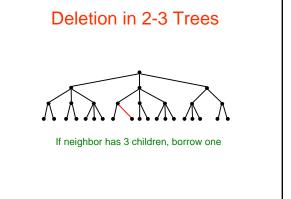


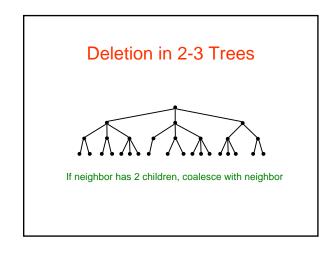


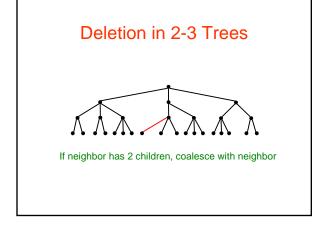


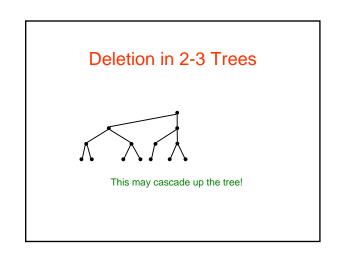












Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Conclusion

Balanced search trees are good

- Search, insert, delete in O(log n) time
- No need to know size in advance
- Several different versions
 - AVL trees, 2-3 trees, red-black trees, skip lists, random treaps, Huffman trees, ...
 - find out more about them in CS482