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Representations of Graphs

1 2
4 3
Adjacency List Adjacency Matrix

Adjacency Matrix or Adjacency List?

n = number of vertices
m = number of edges
d(u) = outdegree of u

« Adjacency Matrix * Adjacency List

—Uses space O(n?) —Uses space O(m+n)

—Can iterate over all edges in —Can iterate over all edges in
time O(n?) time O(m+n)

—Can answer “Is there an edge —Can answer “Is there an edge
from u to v?” in O(1) time from u to v?” in O(d(u)) time

—Better for dense graphs (lots of — Better for sparse graphs (fewer
edges) edges)

Shortest Paths in Graphs

« Finding the shortest (min-cost) path in a graph is a
problem that occurs often
—Find the shortest route between Ithaca and West Lafayette, IN
—Result depends on our notion of cost
* Least mileage
* Least time
« Cheapest
« Least boring
—All of these “costs” can be represented as edge weights

*How do we find a shortest path?

Dijkstra’s Algorithm

dijkstra(s) {
D[s] = 0; D[t] = c(s,t), t # s;
mark s;
while (some vertices are unmarked) {
v = unmarked node with smallest D;
mark v;
for (each w adjacent to v) {
D[w] = min(D[w], DLV] + c(v,w));
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Proof of Correctness

The following are invariants of the loop:
¢ Foru e X, D(u) = d(s,u)
e Foru e Xandv ¢ X, d(s,u) <d(s,v)
« For all u, D(u) is the length of the shortest
path from s to u such that all nodes on the
path (except possibly u) are in X

Implementation:
« Use a priority queue for the nodes not yet
taken — priority is D(u)

Shortest Paths for Unweighted
Graphs — A Special Case

« Use breadth-first search

*Time is O(n + m) in adj list
representation, O(n?) in

e e e adj matrix representation

C—0—®
®

Undirected Trees

» An undirected graph is a tree if there is
exactly one simple path between any
pair of vertices

Facts About Trees

*|E[=|V]-1
e connected
* no cycles

In fact, any two of
these properties
imply the third, and
imply that the graph
is a tree

Spanning Trees

A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree




Spanning Trees

A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree

* Same set of
vertices V

*E'CE
*(V,E") is atree

Finding a Spanning Tree

A subtractive method

 Start with the whole graph — it is connected

« If there is a cycle, pick
an edge on the cycle,
throw it out — the
graph is still
connected (why?)

* Repeat until no more
cycles
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Finding a Spanning Tree
An additive method

« Start with no edges — there are no cycles
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insert an edge . .
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* Repeat until only one . . .
component
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Finding a Spanning Tree
An additive method

« Start with no edges — there are no cycles

If more than one
connected component,
insert an edge

between them — still
no cycles (why?) /\.\
Repeat until only one

component

Minimum Spanning Trees

» Suppose edges are weighted, and we want a
spanning tree of minimum cost (sum of edge
weights)

 Useful in network
routing & other
applications

3 Greedy Algorithms

A. Find a max weight edge —if it is on a cycle,
throw it out, otherwise keep it




3 Greedy Algorithms

A. Find a max weight edge — if it is on a cycle,
throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge —if it is on a cycle,
throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge —if it is on a cycle,
throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge —if it is on a cycle,
throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge —if it is on a cycle,
throw it out, otherwise keep it

3 Greedy Algorithms

A. Find a max weight edge —if it is on a cycle,
throw it out, otherwise keep it




3 Greedy Algorithms

A. Find a max weight edge — if it is on a cycle,
throw it out, otherwise keep it

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it
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3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

— o
° L
Kruskal's a
algorithm L W/ [ 2T .
. » »
[ 2 L

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's 2
algorithm & J

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's a
algorithm iy v Y

3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's 2
algorithm ~y J Y




3 Greedy Algorithms

B. Find a min weight edge — if it forms a cycle

with edges already taken, throw it out,
otherwise keep it

Kruskal's A \
algorithm 4 J ,
10 -, ’\R

3 Greedy Algorithms
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3 Greedy Algorithms

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle
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3 Greedy Algorithms

All 3 greedy algorithms give the same minimum
spanning tree (assuming distinct edge weights)

« O(n?) for adj matrix

Prim’s Algorithm

prim(s) {
D[s] = 0; mark s; //start vertex
while (some vertices are unmarked) {
v = unmarked vertex with smallest D;
mark v;
for (each w adj to v) {
D[w] = min(D[w], c(v,w));

b
¥
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* O(m + n log n) for adj list
— While-loop is executed n times —UseaPQ
— For-loop takes O(n) time — Regular PQ produces time O(n + m log m)

— Can improve to O(m + n log n) using a
fancier heap

Greedy Algorithms

* These are examples of Greedy
Algorithms
* The Greedy Strategy is an
algorithm design technique
— Like Divide & Conquer
* Greedy algorithms are used to
solve optimization problems
— The goal is to find the best solution
« Works when the problem has the
greedy-choice property
— A global optimum can be reached
by making locally optimum choices

« Example: the Change Making
Problem: Given an amount of
money, find the smallest number
of coins to make that amount

« Solution: Use a Greedy Algorithm

— Give as many large coins as you
can

« This greedy strategy produces the
optimum number of coins for the
US coin system

« Different money system = greedy
strategy may fail
— Example: old UK system




Similar Code Structures

* bfs
while (some vertices are —best: next in queue
unmarked) { —update: D[w] = D[v]+1
v = best_of unmarked -dijkstra
vertices; )
TEGR Ve —best: next in PQ

for (each w adj to v) —update: D[w] =
update w; min D[w], D[v]+c(v,w)
3 * prim

—best: next in PQ
—update: D[w] =
min D[w], c(v,w)




