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Representations of Graphs

Adjacency List Adjacency Matrix
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34

Adjacency Matrix or Adjacency List?

n = number of vertices
m = number of edges
d(u) = outdegree of u

• Adjacency Matrix
– Uses space O(n2)
– Can iterate over all edges in 

time O(n2)
– Can answer “Is there an edge 

from u to v?” in O(1) time
– Better for dense graphs (lots of 

edges)

• Adjacency List
– Uses space O(m+n)
– Can iterate over all edges in 

time O(m+n)
– Can answer “Is there an edge 

from u to v?” in O(d(u)) time
– Better for sparse graphs (fewer

edges)

Shortest Paths in Graphs

• Finding the shortest (min-cost) path in a graph is a 
problem that occurs often
–Find the shortest route between Ithaca and West Lafayette, IN
–Result depends on our notion of cost

• Least mileage
• Least time
• Cheapest
• Least boring

–All of these “costs” can be represented as edge weights

• How do we find a shortest path?

Dijkstra’s Algorithm

dijkstra(s) {

D[s] = 0; D[t] = c(s,t), t ≠ s;
mark s;
while (some vertices are unmarked) {

v = unmarked node with smallest D;
mark v;
for (each w adjacent to v) {

D[w] = min(D[w], D[v] + c(v,w));
}

}
}
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The following are invariants of the loop:
• For u ∈ X, D(u) = d(s,u)
• For u ∈ X and v ∉ X, d(s,u) ≤ d(s,v)
• For all u, D(u) is the length of the shortest 

path from s to u such that all nodes on the 
path (except possibly u) are in X

Implementation:
• Use a priority queue for the nodes not yet 

taken – priority is D(u)

Proof of Correctness

Shortest Paths for Unweighted 
Graphs – A Special Case

• Use breadth-first search
• Time is O(n + m) in adj list 

representation, O(n2) in 
adj matrix representationS BA
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Undirected Trees
• An undirected graph is a tree if there is 

exactly one simple path between any 
pair of vertices

Facts About Trees

• |E| = |V| – 1
• connected
• no cycles
In fact, any two of 
these properties 
imply the third, and 
imply that the graph 
is a tree

Spanning Trees
A spanning tree of a connected undirected 
graph (V,E) is a subgraph (V,E') that is a tree



Spanning Trees
A spanning tree of a connected undirected 
graph (V,E) is a subgraph (V,E') that is a tree

• Same set of 
vertices V

• E' ⊆ E

• (V,E') is a tree

Finding a Spanning Tree
A subtractive method

• If there is a cycle, pick 
an edge on the cycle, 
throw it out – the 
graph is still 
connected (why?)

• Repeat until no more 
cycles

• Start with the whole graph – it is connected
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connected component, 
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• If more than one 
connected component, 
insert an edge 
between them – still 
no cycles (why?)

• Repeat until only one 
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree

Minimum Spanning Trees
• Suppose edges are weighted, and we want a 

spanning tree of minimum cost (sum of edge 
weights)
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• Useful in network 
routing & other 
applications
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3 Greedy Algorithms
A. Find a max weight edge – if it is on a cycle, 

throw it out, otherwise keep it
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B. Find a min weight edge – if it forms a cycle 
with edges already taken, throw it out, 
otherwise keep it

Kruskal's 
algorithm
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C. Start with any vertex, add min weight edge 
extending that connected component that 
does not form a cycle

Prim's algorithm 
(reminiscent of 
Dijkstra's  algorithm)
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All 3 greedy algorithms give the same minimum 
spanning tree (assuming distinct edge weights)
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Prim’s Algorithm

• O(m + n log n) for adj list
– Use a PQ
– Regular PQ produces time O(n + m log m)
– Can improve to O(m + n log n) using a

fancier heap

prim(s) {
D[s] = 0; mark s; //start vertex
while (some vertices are unmarked) {

v = unmarked vertex with smallest D;
mark v;
for (each w adj to v) {

D[w] = min(D[w], c(v,w));
}

}
}

• O(n2) for adj matrix
– While-loop is executed n times
– For-loop takes O(n) time

Greedy Algorithms
• These are examples of Greedy

Algorithms
• The Greedy Strategy is an 

algorithm design technique
– Like Divide & Conquer

• Greedy algorithms are used to 
solve optimization problems

– The goal is to find the best solution
• Works when the problem has the 

greedy-choice property
– A global optimum can be reached 

by making locally optimum choices

• Example: the Change Making 
Problem: Given an amount of 
money, find the smallest number 
of coins to make that amount

• Solution: Use a Greedy Algorithm
– Give as many large coins as you 

can
• This greedy strategy produces the 

optimum number of coins for the 
US coin system

• Different money system ⇒ greedy 
strategy may fail

– Example: old UK system



Similar Code Structures

while (some vertices are
unmarked) {

v = best of unmarked
vertices;

mark v;
for (each w adj to v)

update w;
}

• bfs
–best: next in queue
–update: D[w] = D[v]+1

• dijkstra
–best: next in PQ
–update: D[w] =

min D[w], D[v]+c(v,w)

• prim
–best: next in PQ
–update: D[w] =

min D[w], c(v,w)


