
More Graphs Lecture 21
CS211 – Spring 2007

2 3

2 4

3

1

2

3

4

0 1 0 1

0 0 1 0

0 0 0 0

0 1 1 0

1 2 3 4

1

2

3

4

Representations of Graphs

Adjacency List Adjacency Matrix

1 2

34

Adjacency Matrix or Adjacency List?

n = number of vertices
m = number of edges
d(u) = outdegree of u

• Adjacency Matrix
– Uses space O(n2)
– Can iterate over all edges in

time O(n2)
– Can answer “Is there an edge

from u to v?” in O(1) time
– Better for dense graphs (lots of

edges)

• Adjacency List
– Uses space O(m+n)
– Can iterate over all edges in

time O(m+n)
– Can answer “Is there an edge

from u to v?” in O(d(u)) time
– Better for sparse graphs (fewer

edges)

Shortest Paths in Graphs

• Finding the shortest (min-cost) path in a graph is a
problem that occurs often
–Find the shortest route between Ithaca and West Lafayette, IN
–Result depends on our notion of cost

• Least mileage
• Least time
• Cheapest
• Least boring

–All of these “costs” can be represented as edge weights

• How do we find a shortest path?

Dijkstra’s Algorithm

dijkstra(s) {

D[s] = 0; D[t] = c(s,t), t ≠ s;
mark s;
while (some vertices are unmarked) {

v = unmarked node with smallest D;
mark v;
for (each w adjacent to v) {

D[w] = min(D[w], D[v] + c(v,w));
}

}
}

2.4

1.5

1 2

34

2.4

0.91.5

3.1

0.1

X

∞

2.4

1.5

1 2

34

2.4

0.91.5

3.1

0.1

X

∞

1.6

1.5

1 2

34

2.4

0.91.5

3.1

0.1

X

4.6

1.6

1.5

1 2

34

2.4

0.91.5

3.1

0.1

X

4.6

1.6

1.5

1 2

34

2.4

0.91.5

3.1

0.1

X

4.6

1.6

1.5

1 2

34

2.4

0.91.5

3.1

0.1

X

2.5

1.6

1.5

1 2

34

2.4

0.91.5

3.1

0.1

X

2.5

1.6

1.5

1 2

34

2.4

0.91.5

3.1

0.1

X

2.5

The following are invariants of the loop:
• For u ∈ X, D(u) = d(s,u)
• For u ∈ X and v ∉ X, d(s,u) ≤ d(s,v)
• For all u, D(u) is the length of the shortest

path from s to u such that all nodes on the
path (except possibly u) are in X

Implementation:
• Use a priority queue for the nodes not yet

taken – priority is D(u)

Proof of Correctness

Shortest Paths for Unweighted
Graphs – A Special Case

• Use breadth-first search
• Time is O(n + m) in adj list

representation, O(n2) in
adj matrix representationS BA

C D E

F

Undirected Trees
• An undirected graph is a tree if there is

exactly one simple path between any
pair of vertices

Facts About Trees

• |E| = |V| – 1
• connected
• no cycles
In fact, any two of
these properties
imply the third, and
imply that the graph
is a tree

Spanning Trees
A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree

Spanning Trees
A spanning tree of a connected undirected
graph (V,E) is a subgraph (V,E') that is a tree

• Same set of
vertices V

• E' ⊆ E

• (V,E') is a tree

Finding a Spanning Tree
A subtractive method

• If there is a cycle, pick
an edge on the cycle,
throw it out – the
graph is still
connected (why?)

• Repeat until no more
cycles

• Start with the whole graph – it is connected

• If there is a cycle, pick
an edge on the cycle,
throw it out – the
graph is still
connected (why?)

• Repeat until no more
cycles

• Start with the whole graph – it is connected

Finding a Spanning Tree
A subtractive method

• If there is a cycle, pick
an edge on the cycle,
throw it out – the
graph is still
connected (why?)

• Repeat until no more
cycles

• Start with the whole graph – it is connected

Finding a Spanning Tree
A subtractive method

An additive method

• If more than one
connected component,
insert an edge
between them – still
no cycles (why?)

• Repeat until only one
component

• Start with no edges – there are no cycles

Finding a Spanning Tree

• If more than one
connected component,
insert an edge
between them – still
no cycles (why?)

• Repeat until only one
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree

• If more than one
connected component,
insert an edge
between them – still
no cycles (why?)

• Repeat until only one
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree

• If more than one
connected component,
insert an edge
between them – still
no cycles (why?)

• Repeat until only one
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree

• If more than one
connected component,
insert an edge
between them – still
no cycles (why?)

• Repeat until only one
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree

• If more than one
connected component,
insert an edge
between them – still
no cycles (why?)

• Repeat until only one
component

• Start with no edges – there are no cycles

An additive method

Finding a Spanning Tree

Minimum Spanning Trees
• Suppose edges are weighted, and we want a

spanning tree of minimum cost (sum of edge
weights)

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

• Useful in network
routing & other
applications

10

14

16

3 Greedy Algorithms
A. Find a max weight edge – if it is on a cycle,

throw it out, otherwise keep it

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

14

16

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

62
11

12
27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

62
11

12
27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

1

2

5

66

22 28
24

34

72

64

8
25

54

62
11

12
27

49 51

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

3 Greedy Algorithms

4

13

9

6

7

21

15

1

2

5

22 24

8
25

54

11

12

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

3 Greedy Algorithms

4

13

9

6

7

15

1

2

5
8

25

54

11

12

3

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

14

16

3 Greedy Algorithms

14

4

9

6

7

1

2

5
8

25

54

11

12

10

A. Find a max weight edge – if it is on a cycle,
throw it out, otherwise keep it

16

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

14

16

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

14

16

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

14

16

3 Greedy Algorithms

33

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

14

16

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

16

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

16

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

B. Find a min weight edge – if it forms a cycle
with edges already taken, throw it out,
otherwise keep it

Kruskal's
algorithm

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

C. Start with any vertex, add min weight edge
extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

3 Greedy Algorithms
C. Start with any vertex, add min weight edge

extending that connected component that
does not form a cycle

Prim's algorithm
(reminiscent of
Dijkstra's algorithm)

33

14

4

13

9

6
32

40

7

16

21

15

100

1

2

5

66

22 28
24

34

72

64

8
25

54

101

62
11

12
27

49 51

3

10

3 Greedy Algorithms

14

4

9

6

7

1

2

5
8

25

54

11

12

10

All 3 greedy algorithms give the same minimum
spanning tree (assuming distinct edge weights)

16

Prim’s Algorithm

• O(m + n log n) for adj list
– Use a PQ
– Regular PQ produces time O(n + m log m)
– Can improve to O(m + n log n) using a

fancier heap

prim(s) {
D[s] = 0; mark s; //start vertex
while (some vertices are unmarked) {

v = unmarked vertex with smallest D;
mark v;
for (each w adj to v) {

D[w] = min(D[w], c(v,w));
}

}
}

• O(n2) for adj matrix
– While-loop is executed n times
– For-loop takes O(n) time

Greedy Algorithms
• These are examples of Greedy

Algorithms
• The Greedy Strategy is an

algorithm design technique
– Like Divide & Conquer

• Greedy algorithms are used to
solve optimization problems

– The goal is to find the best solution
• Works when the problem has the

greedy-choice property
– A global optimum can be reached

by making locally optimum choices

• Example: the Change Making
Problem: Given an amount of
money, find the smallest number
of coins to make that amount

• Solution: Use a Greedy Algorithm
– Give as many large coins as you

can
• This greedy strategy produces the

optimum number of coins for the
US coin system

• Different money system ⇒ greedy
strategy may fail

– Example: old UK system

Similar Code Structures

while (some vertices are
unmarked) {

v = best of unmarked
vertices;

mark v;
for (each w adj to v)

update w;
}

• bfs
–best: next in queue
–update: D[w] = D[v]+1

• dijkstra
–best: next in PQ
–update: D[w] =

min D[w], D[v]+c(v,w)

• prim
–best: next in PQ
–update: D[w] =

min D[w], c(v,w)

