
Graphs

Lecture 20
CS211 – Spring 2007

2

Prelim 2 Reminder

Prelim 2
Tuesday, April 17, 7:30-9pm
Uris Auditorium
One week from today!
Topics: all material up to (but
not including) this week's
lectures
Does not include graphs

Exam conflicts
Email Kelly Patwell (ASAP)

Prelim 2 Review Session
Sunday 4/15,1:30-3:00pm
Kimball B11
Individual appointments are
available if you cannot attend
the review session (email one
TA to arrange appointment)

Old exams are available for
review on the course website

3

Prelim 2 Topics
Asymptotic complexity
Searching and sorting
Basic ADTs

stacks
queues
sets
dictionaries
priority queues

Basic data structures used to
implement these ADTs

arrays
linked listshash tables
BSTs
balanced BSTs
heaps

Know and understand the sorting
algorithms

From lecture
From text (not Shell Sort)

Know the algorithms associated
with the various data structures

Know BST algorithms, but don’t
need to memorize balanced BST
algorithms

Know the runtime tradeoffs
among data structures
Don’t worry about details of JCF

But should have basic
understanding of what’s available

4

Prelim 2 Topics
Language features

inheritance
inner classes
anonymous inner classes
types & subtypes
iteration & iterators

GUI statics
layout managers
components
containers

GUI dynamics
events
listeners
adapters

5

Data Structure Runtime Summary

Stack [ops = put & get]
O(1) worst-case time

Array (but can overflow)
Linked list

O(1) time/operation
Array with doubling

Queue [ops = put & get]
O(1) worst-case time

Array (but can overflow)
Linked list (need to keep track
of both head & last)

O(1) time/operation
Array with doubling

Priority Queue [ops = insert &
getMin]

O(1) worst-case time
Bounded height PQ (only works if
few priorities)

O(log n) worst-case time
Heap (but can overflow)
Balanced BST

O(log n) time/operation
Heap (with doubling)

O(n) worst-case time
Unsorted linked list
Sorted linked list (O(1) for getMin)
Unsorted array (but can overflow)
Sorted array (O(1) for getMin, but
can overflow)

6

Data Structure Runtime Summary (Cont’d)

Set [ops = insert & remove &
contains]

O(1) worst-case time
Bit-vector (can also do union
and intersect in O(1) time)

O(1) expected time
Hash table (with doubling &
chaining)

O(log n) worst-case time
Balanced BST

O(n) worst-case time
Linked list
Unsorted array
Sorted array (O(log n) for
contains)

Dictionary [ops = insert(k,v) &
get(k) & remove(k)]

O(1) expected time
Hash table (with doubling &
chaining)

O(log n) worst-case time
Balanced BST

O(log n) expected time
Unbalanced BST (if data is
sufficiently random)

O(n) worst-case time
Linked list
Unsorted array
Sorted array (O(log n) for
contains)

7

These are not Graphs

0

20

40

60

80

100

1st
Qtr

2nd
Qtr

3rd
Qtr

4th
Qtr

East

West

North

...not the kind we mean, anyway
8

These are Graphs

K5 K3,3

=

9

Applications of Graphs

Communication networks
Routing and shortest path problems
Commodity distribution (flow)
Traffic control
Resource allocation
Geometric modeling
...

10

Graph Definitions

A directed graph (or digraph) is a pair (V, E) where
V is a set
E is a set of ordered pairs (u,v) where u,v∈V

Usually require u ≠ v (i.e., no self-loops)

An element of V is called a vertex (pl. vertices) or
node
An element of E is called an edge or arc

|V| = size of V, often denoted n
|E| = size of E, often denoted m

11

Example Directed Graph (Digraph)

V = {a,b,c,d,e,f }
E = {(a,b), (a,c), (a,e), (b,c), (b,d), (b,e), (c,d),

(c,f), (d,e), (d,f), (e,f)}

|V| = 6, |E| = 11

b

a

c
d

e
f

12

Example Undirected Graph

An undirected graph is just like a directed graph,
except the edges are unordered pairs (sets) {u,v}

Example:
b

a

c

e

d

f

V = {a,b,c,d,e,f }
E = {{a,b}, {a,c}, {a,e}, {b,c}, {b,d}, {b,e}, {c,d}, {c,f},

{d,e}, {d,f }, {e,f }}

13

Some Graph Terminology

Vertices u and v are called the source and sink of the directed
edge (u,v), respectively
Vertices u and v are called the endpoints of (u,v)
Two vertices are adjacent if they are connected by an edge
The outdegree of a vertex u in a directed graph is the number of
edges for which u is the source
The indegree of a vertex v in a directed graph is the number of
edges for which v is the sink
The degree of a vertex u in an undirected graph is the number of
edges of which u is an endpoint

b

a

c

e

d

f

b

a

c
d

e
f

14

More Graph Terminology

A path is a sequence v0,v1,v2,...,vp of vertices such
that (vi,vi+1) ∈ E, 0 ≤ i ≤ p – 1
The length of a path is its number of edges

In this example, the length is 5

A path is simple if it does not repeat any vertices
A cycle is a path v0,v1,v2,...,vp such that v0 = vp

A cycle is simple if it does not repeat any vertices
except the first and last
A graph is acyclic if it has no cycles
A directed acyclic graph is called a dag

v0

v5

b

a

c
d

e
f

15

Is This a Dag?

Intuition:
If it’s a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

16

Is this a dag?

Intuition:
If it’s a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

17

Is this a dag?

Intuition:
If it’s a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

18

Is this a dag?

Intuition:
If it’s a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

19

Is this a dag?

Intuition:
If it’s a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

20

Is this a dag?

Intuition:
If it’s a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

21

Is this a dag?

Intuition:
If it’s a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

22

Is this a dag?

Intuition:
If it’s a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

23

Is this a dag?

Intuition:
If it’s a dag, there must be a vertex with indegree zero – why?

This idea leads to an algorithm
A digraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

24

Topological Sort

We just computed a topological sort of the dag
This is a numbering of the vertices such that all edges go
from lower- to higher-numbered vertices

Useful in job scheduling with precedence constraints

0

1

2

3

4
5

25

Graph Coloring

A coloring of an undirected graph is an assignment of
a color to each node such that no two adjacent
vertices get the same color

How many colors are needed to color this graph?

26

Graph Coloring

A coloring of an undirected graph is an assignment of
a color to each node such that no two adjacent
vertices get the same color

How many colors are needed to color this graph?
3

27

An Application of Coloring

Vertices are jobs
Edge (u,v) is present if jobs u and v each require
access to the same shared resource, and thus cannot
execute simultaneously
Colors are time slots to schedule the jobs
Minimum number of colors needed to color the graph
= minimum number of time slots required

28

Planarity

A graph is planar if it can be embedded in the plane
with no edges crossing

Is this graph planar?

29

Planarity

A graph is planar if it can be embedded in the plane
with no edges crossing

Is this graph planar?
Yes

30

Planarity

A graph is planar if it can be embedded in the plane
with no edges crossing

Is this graph planar?
Yes

31

Detecting Planarity

Kuratowski's Theorem

A graph is planar if and only if it does not contain a copy
of K5 or K3,3 (possibly with other nodes along the
edges shown)

K3,3K5

32

Every planar graph
is 4-colorable

(Appel & Haken, 1976)

The
Four-Color

Theorem

33

Bipartite Graphs

A directed or undirected graph is bipartite if the
vertices can be partitioned into two sets such that all
edges go between the two sets

34

Bipartite Graphs

The following are equivalent
G is bipartite
G is 2-colorable
G has no cycles of odd length

35

Amsterdam

Rome

Boston

Atlanta

London

Paris

Copenhagen

Munich

Ithaca

New York

Washington

1202
1380

1214
1322

1356

1002

512
216

441

189
160

15561323

419

210

224 132

660 505

1078

Traveling Salesperson

Find a path of minimum distance that visits every city

36

2 3

2 4

3

1

2

3

4

0 1 0 1

0 0 1 0

0 0 0 0

0 1 1 0

1 2 3 4

1

2

3

4

Representations of Graphs

Adjacency List Adjacency Matrix

1 2

34

37

Adjacency Matrix or Adjacency List?

n = number of vertices
m = number of edges
d(u) = degree of u = number of

edges leaving u

Adjacency Matrix
Uses space O(n2)
Can iterate over all edges in
time O(n2)
Can answer “Is there an edge
from u to v?” in O(1) time
Better for dense graphs (lots of
edges)

Adjacency List
Uses space O(m+n)
Can iterate over all edges in
time O(m+n)
Can answer “Is there an edge
from u to v?” in O(d(u)) time
Better for sparse graphs (fewer
edges)

38

Graph Algorithms

• Search
– depth-first search
– breadth-first search

• Shortest paths
– Dijkstra's algorithm

• Minimum spanning trees
– Prim's algorithm
– Kruskal's algorithm

39

Depth-First Search

• Follow edges depth- first starting from an
arbitrary vertex r, using a stack to
remember where you came from

• When you encounter a vertex previously
visited, or there are no outgoing edges,
retreat and try another path

• Eventually visit all vertices reachable from r
• If there are still unvisited vertices, repeat
• O(m) time

40

Depth-First Search

41

Depth-First Search

42

Depth-First Search

43

Depth-First Search

44

Depth-First Search

45

Depth-First Search

46

Depth-First Search

47

Depth-First Search

48

Depth-First Search

49

Depth-First Search

50

Depth-First Search

51

Depth-First Search

52

Depth-First Search

53

Depth-First Search

54

Depth-First Search

55

Depth-First Search

56

Depth-First Search

57

Depth-First Search

58

Depth-First Search

59

Depth-First Search

60

Depth-First Search

61

Depth-First Search

62

Depth-First Search

63

Depth-First Search

64

Depth-First Search

65

Depth-First Search

66

Breadth-First Search

• Same, except use a queue instead of a
stack to determine which edge to explore
next

67

Breadth-First Search

68

Breadth-First Search

69

Breadth-First Search

70

Breadth-First Search

71

Breadth-First Search

72

Breadth-First Search

73

Breadth-First Search

74

Breadth-First Search

75

Breadth-First Search

76

Shortest Paths

Suppose you have a US Airways route map
with intercity distances. You want to know the
shortest distance from Ithaca to every city
served by US Airways.

This is known as the single-source shortest
path problem.

77

1 2 3 4

1

2

3

4

0 2.4 ∞ 1.5

∞ 0 0.9 ∞

∞ ∞ 0 ∞

∞ 0.1 3.1 0

s = 1 2

34

Shortest Paths

2.4

0.91.5

3.1

0.1

Digraph with
edge weights

Corresponding
matrix

Single-source shortest path problem: Given a graph
with edge weights w(u,v) and a designated vertex s,
find the shortest path from s to every other vertex
(length of a path = sum of edge weights)

78

s = 1 2

34

Shortest Paths

2.4

0.91.5

3.1

0.1

• Let d(s,u) denote the distance (length of shortest
path) from s to u. In this example,

• d(1,1) = 0
• d(1,2) = 1.6
• d(1,3) = 2.5
• d(1,4) = 1.5

79

1 2

34

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Let X = {s}
– X is the set of nodes for which we have already

determined the shortest path

• For each node u ∉ X, define D(u) = w(s,u)
– D(2) = 2.4
– D(3) = ∞
– D(4) = 1.5

X

80

1 2

34

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Find u ∉ X such that D(u) is minimum, add it to X
– at that point, d(s,u) = D(u)

• For each node v ∉ X such that (u,v) ∈ E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

– D(2) = 2.4
– D(3) = ∞
– D(4) = 1.5

X

81

4

1 2

3

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Find u ∉ X such that D(u) is minimum, add it to X
– at that point, d(s,u) = D(u) u = 4

• For each node v ∉ X such that (u,v) ∈ E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

– D(2) = 2.4
– D(3) = ∞
– D(4) = 1.5 = d(1,4)

X

82

4

1 2

3

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Find u ∉ X such that D(u) is minimum, add it to X
– at that point, d(s,u) = D(u) u = 4

• For each node v ∉ X such that (u,v) ∈ E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

– D(2) = 2.4 1.6
– D(3) = ∞ 4.6
– D(4) = 1.5 = d(1,4)

X

83

4

1 2

3

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Find u ∉ X such that D(u) is minimum, add it to X
– at that point, d(s,u) = D(u)

• For each node v ∉ X such that (u,v) ∈ E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

– D(2) = 2.4 1.6
– D(3) = ∞ 4.6
– D(4) = 1.5 = d(1,4)

X

84

1 2

34

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Find u ∉ X such that D(u) is minimum, add it to X
– at that point, d(s,u) = D(u) u = 2

• For each node v ∉ X such that (u,v) ∈ E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

– D(2) = 2.4 1.6 = d(1,2)
– D(3) = ∞ 4.6
– D(4) = 1.5 = d(1,4)

X

85

1 2

34

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Find u ∉ X such that D(u) is minimum, add it to X
– at that point, d(s,u) = D(u) u = 2

• For each node v ∉ X such that (u,v) ∈ E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

– D(2) = 2.4 1.6 = d(1,2)
– D(3) = ∞ 4.6 2.5
– D(4) = 1.5 = d(1,4)

X

86

1 2

34

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Find u ∉ X such that D(u) is minimum, add it to X
– at that point, d(s,u) = D(u)

• For each node v ∉ X such that (u,v) ∈ E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

– D(2) = 2.4 1.6 = d(1,2)
– D(3) = ∞ 4.6 2.5
– D(4) = 1.5 = d(1,4)

X

87

1 2

34

Dijkstra's Algorithm

2.4

0.91.5

3.1

0.1

• Find u ∉ X such that D(u) is minimum, add it to X
– at that point, d(s,u) = D(u) u = 3

• For each node v ∉ X such that (u,v) ∈ E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)

– D(2) = 2.4 1.6 = d(1,2)
– D(3) = ∞ 4.6 2.5 = d(1,3)
– D(4) = 1.5 = d(1,4)

X

88

Proof of correctness – show that the
following are invariants of the loop:

• For u ∈ X, D(u) = d(s,u)
• For u ∈ X and v ∉ X, d(s,u) ≤ d(s,v)
• For all u, D(u) is the length of the shortest

path from s to u such that all nodes on the
path (except possibly u) are in X

Implementation:
• Use a priority queue for the nodes not yet

taken – priority is D(u)

Dijkstra's Algorithm

89

Complexity

• Every edge is examined once when its source is
taken into X

• A vertex may be placed in the priority queue
multiple times, but at most once for each
incoming edge

• Number of insertions and deletions into priority
queue = m + 1, where m = |E|

• Total complexity = O(m log m)

90

Conclusion

• There are faster but much more complicated
algorithms for single-source, shortest-path
problem that run in time O(n log n + m) using
something called Fibonacci heaps

• It is important that all edge weights be
nonnegative – Dijkstra's algorithm does not work
otherwise, we need a more complicated algorithm
called Warshall's algorithm

• Learn about this and more in CS482

