Lecture 20
CS211 - Spring 2007

Prelim 2 Reminder

* Prelim 2 * Prelim 2 Review Session
= Tuesday, April 17, 7:30-9pm = Sunday 4/15,1:30-3:00pm
= Uris Auditorium = Kimball B11
= One week from today! = Individual appointments are
= Topics: all material up to (but available if you cannot attend
not including) this week's the review session (email one
lectures TA to arrange appointment)
= Does not include graphs
* Old exams are available for
« Exam conflicts review on the course website

= Email Kelly Patwell (ASAP)

Prelim 2 Topics

* Asymptotic complexity
* Searching and sorting
* Basic ADTs
= stacks
" queues
= sets
= dictionaries
= priority queues
* Basic data structures used to
implement these ADTs
= arrays
= linked listshash tables
= BSTs
= balanced BSTs
= heaps

* Know and understand the sorting
algorithms
= From lecture
= From text (not Shell Sort)
* Know the algorithms associated
with the various data structures
= Know BST algorithms, but don't
need to memorize balanced BST
algorithms
* Know the runtime tradeoffs
among data structures
* Don’t worry about details of JCF
= But should have basic
understanding of what's available

Prelim 2 Topics

« Language features * GUI dynamics

= inheritance = events
= inner classes = listeners
= anonymous inner classes = adapters

= types & subtypes
= iteration & iterators

* GUI statics
= layout managers
= components
= containers

Data Structure Runtime Summary

* Stack [ops = put & get]
= O(1) worst-case time
+ Array (but can overflow)
+ Linked list
= O(1) time/operation
+ Array with doubling

* Queue [ops = put & get]
= O(1) worst-case time
+ Array (but can overflow)

+ Linked list (need to keep track
of both head & last)

= O(1) time/operation
+ Array with doubling

* Priority Queue [ops = insert &
getMin]

= O(1) worst-case time

+ Bounded height PQ (only works if
few priorities)

= O(log n) worst-case time
+ Heap (but can overflow)
+ Balanced BST

= O(log n) time/operation
+ Heap (with doubling)

= O(n) worst-case time
+ Unsorted linked list
+ Sorted linked list (O(1) for getMin)
+ Unsorted array (but can overflow)

+ Sorted array (O(1) for getMin, but
can overflow)

Data Structure Runtime Summary (Cont'd)

* Set [ops = insert & remove & « Dictionary [ops = insert(k,v) &
contains] get(k) & remove(k)]
= O(1) worst-case time = O(1) expected time
+ Bit-vector (can also do union + Hash table (with doubling &

and intersect in O(1) time) chaining)
= O(1) expected time = O(log n) worst-case time
+ Hash table (with doubling & + Balanced BST
chaining) = O(log n) expected time
* O(log n) worst-case time + Unbalanced BST (if data is
+ Balanced BST sufficiently random)
= O(n) worst-case time = O(n) worst-case time
¢ Linked list Linked list
+ Unsorted array + Unsorted array
+ Sorted array (O(log n) for + Sorted array (O(log n) for

contains) contains)

These are not Graphs

100
80

60
O East

40
B West
2 B North
(]

1st 2nd 3rd 4th
Qtr Qfr Qtr Qtr

...not the kind we mean, anyway

These are Graphs

Ty E
o=

Applications of Graphs

* Communication networks

* Routing and shortest path problems
* Commodity distribution (flow)

* Traffic control

* Resource allocation

* Geometric modeling

Graph Definitions
* A (or) is a pair (V, E) where
= Visaset

= E is a set of ordered pairs (u,v) where u,veV
+ Usually require u # v (i.e., no self-loops)

* An element of V is called a (pl.) or
* An element of E is called an or

¢ |V| = size of V, often denoted
* |[E| = size of E, often denoted

Example Directed Graph (Digraph)

d
a%f
V ={a,b,c,de,f}

E={(ab), (ac), (@e), (b.c), (b,d), (be), (c.,0),
(cf), (d.e), (d.), (&N}

VI =6, [E|=11

Example Undirected Graph

An is just like a directed graph,
except the edges are (sets) {u,v}
Example: .

2
V ={a,b,c,d,ef} ’
E ={{a,b}, {a,c}, {a,e}, {b,c}, {b,d}, {b,e}, {c,d}, {c.,f},

{d.e}, {d.f}, {e.f}}

Some Graph Terminology

 Vertices u and v are called the and of the directed
edge (u,v), respectively

* Vertices u and v are called the of (u,v)

* Two vertices are if they are connected by an edge

* The of a vertex u in a directed graph is the number of
edges for which u is the source

* The of a vertex v in a directed graph is the number of
edges for which v is the sink

* The of a vertex u in an undirected graph is the number of

edges of which u is an endpoint
b

b

More Graph Terminology

vog\‘./'.\"/"’—’-"v5
°A is a sequence Vy,V,,V,,...,v, of vertices such
that (v,,v;,;) e E,0<i<p-1
* The is its number of edges
= In this example, the length is 5
* A pathis if it does not repeat any vertices
*A is a path v,vy,Vy,...,v, such that v, = v,
* Acycleis if it does not repeat any vertices
except the first and last .
e Agraphis if it has no cycles d
* A directed acyclic graph is called a

Is This a Dag?

* Intuition:
= If it's a dag, there must be a vertex with indegree zero — why?
¢ This idea leads to an algorithm

= Adigraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

Is this a dag?

* Intuition:
= Ifit's a dag, there must be a vertex with indegree zero — why?
* This idea leads to an algorithm

= Adigraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

Is this a dag?

¢ Intuition:
= |If it's a dag, there must be a vertex with indegree zero — why?
* This idea leads to an algorithm

= Adigraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

Is this a dag?

* Intuition:
= [fit's a dag, there must be a vertex with indegree zero — why?
* This idea leads to an algorithm

= Adigraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

Is this a dag?

Intuition:
= Ifit's a dag, there must be a vertex with indegree zero — why?
This idea leads to an algorithm

= Adigraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

Is this a dag?

* Intuition:
= Ifit's a dag, there must be a vertex with indegree zero — why?
* This idea leads to an algorithm

= Adigraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

Is this a dag?

Intuition:
= |If it's a dag, there must be a vertex with indegree zero — why?
This idea leads to an algorithm

= Adigraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

Is this a dag?

* Intuition:
= Ifit's a dag, there must be a vertex with indegree zero — why?
* This idea leads to an algorithm

= Adigraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

Is this a dag?

Intuition:
= |If it's a dag, there must be a vertex with indegree zero — why?
This idea leads to an algorithm

= Adigraph is a dag if and only if we can iteratively delete indegree-0
vertices until the graph disappears

Topological Sort

* We just computed a of the dag

= This is a numbering of the vertices such that all edges go
from lower- to higher-numbered vertices

Useful in job scheduling with precedence constraints

Graph Coloring
A of an undirected graph is an assignment of

a color to each node such that no two adjacent
vertices get the same color

* How many colors are needed to color this graph?

Graph Coloring

° A of an undirected graph is an assignment of
a color to each node such that no two adjacent
vertices get the same color

* How many colors are needed to color this graph?
=3

An Application of Coloring

* Vertices are jobs

 Edge (u,v) is present if jobs u and v each require
access to the same shared resource, and thus cannot
execute simultaneously

* Colors are time slots to schedule the jobs

e Minimum number of colors needed to color the graph
= minimum number of time slots required

Planarity

* Agraphis if it can be embedded in the plane
with no edges crossing

¢ Is this graph planar?

Planarity

e A graphis if it can be embedded in the plane
with no edges crossing

e Is this graph planar?
= Yes

Planarity

* Agraphis if it can be embedded in the plane
with no edges crossing

e |Is this graph planar?
= Yes

Detecting Planarity

Kuratowski's Theorem

vy, =

A graph is planar if and only if it does not contain a copy
of Kg or K, 5 (possibly with other nodes along the
edges shown)

The
Four-Color
Theorem

Every planar graph

is 4-colorable
(Appel & Haken, 1976)

Bipartite Graphs

* A directed or undirected graph is bipartite if the
vertices can be partitioned into two sets such that all
edges go between the two sets

Bipartite Graphs

* The following are equivalent
= G is bipartite
= G is 2-colorable
= G has no cycles of odd length

Traveling Salesperson

* Find a path of minimum distance that visits every city

Representations of Graphs

14 2
4 3
Adjacency List Adjacency Matrix
1 2 3 4
1 0 1 0 1
2 0 0 1 [
3 0 0 0 o
4 0 1 1 [
[4__of

Adjacency Matrix or Adjacency List?

n = number of vertices * Adjacency List
m = number of edges = Uses space O(m+n)
d(u) = degree of u = number of = Can iterate over all edges in

time O(m+n)

= Can answer “Is there an edge
from u to v?” in O(d(u)) time

edges leaving u

* Adjacency Matrix

= Better for graphs (fewer
= Uses space O(n?) edges)
= Can iterate over all edges in
time O(n?)

= Can answer “Is there an edge
from u to v?” in O(1) time

= Better for graphs (lots of
edges)

Graph Algorithms

« Search
—depth-first search
—breadth-first search

* Shortest paths
—Dijkstra's algorithm

* Minimum spanning trees
—Prim's algorithm
—Kruskal's algorithm

Depth-First Search

* Follow edges depth fist starting from an
arbitrary vertex r, using a stack to
remember where you came from

* When you encounter a vertex previously
visited, or there are no outgoing edges,
retreat and try another path

* Eventually visit all vertices reachable from r

« If there are still unvisited vertices, repeat

e O(m) time

Depth-First Search

Depth-First Search

Depth-First Search

Depth-First Search

=R

Depth-First Search

A

Depth-First Search

A

Depth-First Search

LA

Depth-First Search

A

Depth-First Search

A

Depth-First Search

2

Depth-First Search

2

Depth-First Search

A

Depth-First Search

A

Depth-First Search

A

Depth-First Search

2

Depth-First Search

A

Depth-First Search

2

Depth-First Search

A

Depth-First Search

A

Depth-First Search

A

Depth-First Search

2

Depth-First Search

X2

Depth-First Search

2,

Depth-First Search

XA

Depth-First Search

XA

Depth-First Search

XA

Breadth-First Search

» Same, except use a queue instead of a
stack to determine which edge to explore
next

Breadth-First Search

XA

Breadth-First Search

A

Breadth-First Search

A

Breadth-First Search

A

Breadth-First Search

A

Breadth-First Search

2

Breadth-First Search

Breadth-First Search

Breadth-First Search

Shortest Paths

Suppose you have a US Airways route map
with intercity distances. You want to know the
shortest distance from Ithaca to every city
served by US Airways.

This is known as the single-source shortest
path problem.

Shortest Paths

1 2 3 4
s=19—20 90 1|0 |2.4]|w [1.5
1.5 0.1 0.9 2w | 0 (0.9 »
4 313 3|lw|lw|[0]|w
4| w [0.1]3.1]| 0
Digraph with Corresponding
edge weights matrix

Single-source shortest path problem: Given a graph
with edge weights w(u,v) and a designated vertex s,
find the shortest path from s to every other vertex
(length of a path = sum of edge weights)

Shortest Paths

2.4 2

0.9
1.5 61

3

3.1

« Let d(s,u) denote the distance (length of shortest
path) from s to u. In this example,
.d1,1)=0
+d(1,2) =16
- d(1,3)=25
- d(1,4)=15

Dijkstra's Algorithm

eLet X ={s}

— X is the set of nodes for which we have already
determined the shortest path

« For each node u ¢ X, define D(u) = w(s,u)
-D(2)=24
- D)=
-D@)=15

Dijkstra's Algorithm

@y
/ 0.9
1.5 6.1 -

43

*Find u ¢ X such that D(u) is minimum, add it to X
— at that point, d(s,u) = D(u)
 For each node v ¢ X such that (u,v) € E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
-D(2) =24
-D@)= @
-D@4)=15

Dijkstra's Algorithm

X 2.4,

0.9
11 5] 6.1

3.1 %3

*Find u ¢ X such that D(u) is minimum, add it to X
— at that point, d(s,u) = D(u) u=4

* For each node v ¢ X such that (u,v) € E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
-D(2)=24
-D@B)= »
- D(4)=15=d(1,4)

Dijkstra's Algorithm

X
2.4,
0.9
s | ¢4
3

AN

*Find u ¢ X such that D(u) is minimum, add it to X
— at that point, d(s,u) =D(u) u=4

* For each node v ¢ X such that (u,v) € E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
-D(2)=24 16
-D@) =2 4.6
- D(4)=15=d(1,4)

Dijkstra's Algorithm

X 2.4,

0.9
11 5] 61

3.1 08

* Find u ¢ X such that D(u) is minimum, add it to X
— at that point, d(s,u) = D(u)
« For each node v ¢ X such that (u,v) € E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
-DR)=2¢ 16
-D@) =2 4.6
- D(4)=15=d(1,4)

Dijkstra's Algorithm

*Find u ¢ X such that D(u) is minimum, add it to X
— at that point, d(s,u) =D(u) u=2
« For each node v ¢ X such that (u,v) € E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
-D()=24 1.6=d(1,2)
-D@) =2 4.6
- D(4)=15=d(1,4)

Dijkstra's Algorithm

* Find u ¢ X such that D(u) is minimum, add it to X
— at that point, d(s,u) =D(u) u=2
* For each node v ¢ X such that (u,v) € E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
-D@2)=24 16=d(1,2)
-D@B) =X 36 25
- D(4)=15=d(1,4)

Dijkstra's Algorithm

*Find u ¢ X such that D(u) is minimum, add it to X
— at that point, d(s,u) = D(u)
 For each node v ¢ X such that (u,v) € E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
-D@) =24 16=d(12)
-D@B) =X #¥6 25
- D(4)=15=d(1,4)

Dijkstra's Algorithm

* Find u ¢ X such that D(u) is minimum, add it to X
— at that point, d(s,u) = D(u) u=3
* For each node v ¢ X such that (u,v) € E,
if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
-D()=2¢ 1.6=d(1,2)
-D@B) =2 #§ 25=d(1,3)
- D(4)=15=d(1,4)

Dijkstra's Algorithm

Proof of correctness — show that the
following are invariants of the loop:
e Foru e X, D(u) = d(s,u)
e Forue Xandv ¢ X, d(s,u) <d(s,v)
« For all u, D(u) is the length of the shortest
path from s to u such that all nodes on the
path (except possibly u) are in X

Implementation:
 Use a priority queue for the nodes not yet
taken — priority is D(u)

Complexity

« Every edge is examined once when its source is
taken into X

« A vertex may be placed in the priority queue
multiple times, but at most once for each
incoming edge

* Number of insertions and deletions into priority
queue =m + 1, where m = |E|

« Total complexity = O(m log m)

Conclusion

« There are faster but much more complicated
algorithms for single-source, shortest-path
problem that run in time O(n log n + m) using
something called Fibonacci heaps

« It is important that all edge weights be
nonnegative — Dijkstra's algorithm does not work
otherwise, we need a more complicated algorithm
called Warshall's algorithm

« Learn about this and more in CS482

