

Prelim 2 Reminder

- Prelim 2
- Tuesday, April 17, 7:30-9pm
- Uris Auditorium
- One week from today!
- Topics: all material up to (but not including) this week's lectures
- Does not include graphs
- Exam conflicts
 - Email Kelly Patwell (ASAP)
- Prelim 2 Review Session
- Sunday 4/15,1:30-3:00pm
- Kimball B11
- Individual appointments are available if you cannot attend the review session (email one TA to arrange appointment)
- Old exams are available for review on the course website

2

Prelim 2 Topics

- Asymptotic complexity
- Searching and sorting
- Basic ADTs
- queues sets
- dictionaries
- priority queues
- Basic data structures used to implement these ADTs
- arrayslinked listshash tables BSTs
- balanced BSTs
- heaps

- Know and understand the sorting algorithms
 - From lecture
 - From text (not Shell Sort)
- Know the algorithms associated with the various data structures
- Know BST algorithms, but don't need to memorize balanced BST algorithms
- Know the runtime tradeoffs among data structures
- Don't worry about details of JCF
 - But should have basic understanding of what's available

Prelim 2 Topics

- Language features
 - inheritance
 - inner classes
 - anonymous inner classes
 - types & subtypes
 - iteration & iterators
- GUI statics
 - layout managers
- components
- containers

- GUI dynamics
 - events
 - listeners
 - adapters

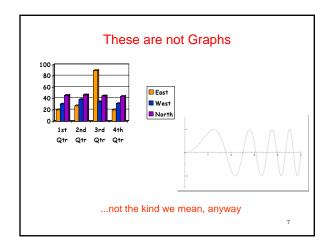
Data Structure Runtime Summary

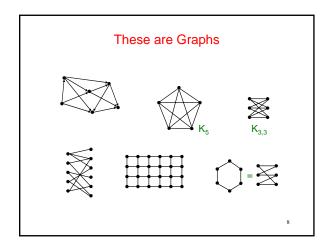
- Stack [ops = put & get]
 - O(1) worst-case time Array (but can overflow)
 - Linked list
 - O(1) time/operation · Array with doubling
- Queue [ops = put & get]
 - O(1) worst-case time Array (but can overflow)
 - Linked list (need to keep track of both head & last)
 - O(1) time/operation
 - · Array with doubling

- Priority Queue [ops = insert & getMin]
- O(1) worst-case time
 - Bounded height PQ (only works if few priorities)
- O(log n) worst-case time Heap (but can overflow)
- Balanced BST
- O(log n) time/operation
- . Heap (with doubling) O(n) worst-case time
- Unsorted linked list
- Sorted linked list (O(1) for getMin) . Unsorted array (but can overflow)
- Sorted array (O(1) for getMin, but can overflow)

Data Structure Runtime Summary (Cont'd)

- Set [ops = insert & remove & contains]
 - O(1) worst-case time
 - Bit-vector (can also do union and intersect in O(1) time)
 - O(1) expected time
 - Hash table (with doubling & chaining)
 - O(log n) worst-case time Balanced BST
 - O(n) worst-case time • Linked list
 - Unsorted array
 - Sorted array (O(log n) for contains)
- Dictionary [ops = insert(k,v) & get(k) & remove(k)]
 - O(1) expected time
 - Hash table (with doubling & chaining)
 - O(log n) worst-case time
 - Balanced BST
 - O(log n) expected time . Unbalanced BST (if data is
 - sufficiently random) O(n) worst-case time
 - Linked list
 - Unsorted array
 - Sorted array (O(log n) for contains)





Applications of Graphs

- Communication networks
- Routing and shortest path problems
- Commodity distribution (flow)
- Traffic control
- Resource allocation
- Geometric modeling
- ...

9

Graph Definitions

- A directed graph (or digraph) is a pair (V, E) where
 - V is a set
 - \blacksquare E is a set of ordered pairs (u,v) where u,v \in V
 - Usually require $u \neq v$ (i.e., no self-loops)
- An element of V is called a vertex (pl. vertices) or node
- An element of E is called an edge or arc
- |V| = size of V, often denoted n
- |E| = size of E, often denoted m

10

Example Directed Graph (Digraph)

$$\begin{split} V &= \{a,b,c,d,e,f\} \\ E &= \{(a,b),\,(a,c),\,(a,e),\,(b,c),\,(b,d),\,(b,e),\,(c,d),\\ &\quad (c,f),\,(d,e),\,(d,f),\,(e,f)\} \end{split}$$

|V| = 6, |E| = 11

11

Example Undirected Graph

An *undirected graph* is just like a directed graph, except the edges are *unordered pairs* (sets) {u,v}

Example:

 $V = \{a,b,c,d,e,f\}$

 $E = \{\{a,b\}, \{a,c\}, \{a,e\}, \{b,c\}, \{b,d\}, \{b,e\}, \{c,d\}, \{c,f\}, \{d,e\}, \{d,f\}, \{e,f\}\}$

Some Graph Terminology

- Vertices u and v are called the source and sink of the directed edge (u,v), respectively
- Vertices u and v are called the endpoints of (u,v)
- Two vertices are adjacent if they are connected by an edge
- The outdegree of a vertex u in a directed graph is the number of edges for which u is the source
- The indegree of a vertex v in a directed graph is the number of edges for which v is the sink
- The degree of a vertex u in an undirected graph is the number of edges of which u is an endpoint

13

More Graph Terminology

- A path is a sequence $v_0, v_1, v_2, ..., v_p$ of vertices such that $(v_i, v_{i+1}) \in E, \ 0 \le i \le p-1$
- The length of a path is its number of edges
 - In this example, the length is 5
- A path is simple if it does not repeat any vertices
- A cycle is a path $v_0, v_1, v_2, ..., v_p$ such that $v_0 = v_p$
- A cycle is simple if it does not repeat any vertices except the first and last
- A graph is acyclic if it has no cycles
- A directed acyclic graph is called a dag

Is This a Dag?

- Intuition
- If it's a dag, there must be a vertex with indegree zero why?
- This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

15

Is this a dag?

- Intuition
 - If it's a dag, there must be a vertex with indegree zero why?
- This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

16

Is this a dag?

- Intuition
 - If it's a dag, there must be a vertex with indegree zero why?
- This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Is this a dag?

- Intuition
- If it's a dag, there must be a vertex with indegree zero why?
- This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

18

Is this a dag?

- Intuition:
- If it's a dag, there must be a vertex with indegree zero why?
- This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

19

Is this a dag?

- Intuition:
 - If it's a dag, there must be a vertex with indegree zero why?
- This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

20

Is this a dag?

- Intuition
- If it's a dag, there must be a vertex with indegree zero why?
- This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

21

23

Is this a dag?

- Intuition
- If it's a dag, there must be a vertex with indegree zero why?
- This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

22

Is this a dag?

- Intuition
 - If it's a dag, there must be a vertex with indegree zero why?
- This idea leads to an algorithm
 - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

Topological Sort

- We just computed a topological sort of the dag
 - This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices

Useful in job scheduling with precedence constraints

Graph Coloring

 A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

• How many colors are needed to color this graph?

25

Graph Coloring

 A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color

• How many colors are needed to color this graph?

3

26

An Application of Coloring

- Vertices are jobs
- Edge (u,v) is present if jobs u and v each require access to the same shared resource, and thus cannot execute simultaneously
- Colors are time slots to schedule the jobs
- Minimum number of colors needed to color the graph = minimum number of time slots required

2

29

Planarity

• A graph is planar if it can be embedded in the plane with no edges crossing

• Is this graph planar?

28

Planarity

• A graph is planar if it can be embedded in the plane with no edges crossing

- Is this graph planar?
 - Yes

Planarity

• A graph is planar if it can be embedded in the plane with no edges crossing

- Is this graph planar?
 - Yes

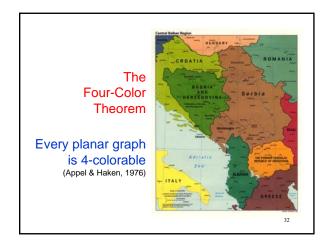
Detecting Planarity

Kuratowski's Theorem



A graph is planar if and only if it does not contain a copy of $\rm K_5$ or $\rm K_{3,3}$ (possibly with other nodes along the edges shown)

31



Bipartite Graphs

 A directed or undirected graph is bipartite if the vertices can be partitioned into two sets such that all edges go between the two sets

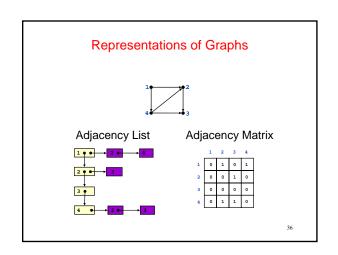
33

Bipartite Graphs

- The following are equivalent
 - G is bipartite
 - G is 2-colorable
 - G has no cycles of odd length

34

Traveling Salesperson **Find a path of minimum distance that visits every city**



Adjacency Matrix or Adjacency List?

n = number of vertices m = number of edgesd(u) = degree of u = number of

edges leaving u

Adjacency Matrix

- Uses space O(n²)
- Can iterate over all edges in time O(n²)
- Can answer "Is there an edge from u to v?" in O(1) time
- Better for dense graphs (lots of edges)

- Adjacency List
- Uses space O(m+n)
- Can iterate over all edges in time O(m+n)
- Can answer "Is there an edge from u to v?" in O(d(u)) time
- Better for sparse graphs (fewer

37

Graph Algorithms

- Search
 - depth-first search
 - breadth-first search
- Shortest paths
 - Dijkstra's algorithm
- · Minimum spanning trees
 - Prim's algorithm
 - Kruskal's algorithm

38

Depth-First Search

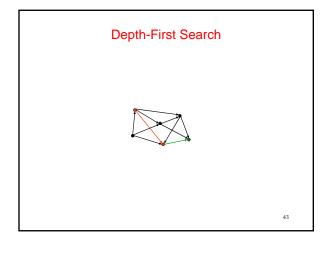
- Follow edges depth first starting from an arbitrary vertex r, using a stack to remember where you came from
- When you encounter a vertex previously visited, or there are no outgoing edges, retreat and try another path
- Eventually visit all vertices reachable from r
- If there are still unvisited vertices, repeat
- O(m) time

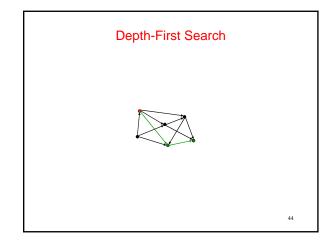
Depth-First Search

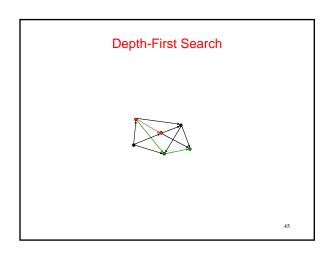
Depth-First Search

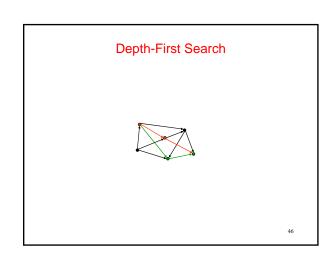
41

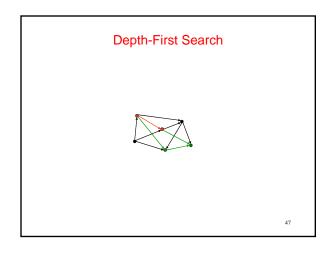
Depth-First Search

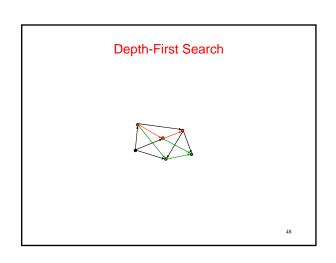




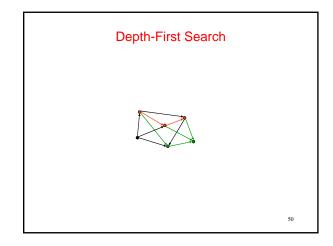


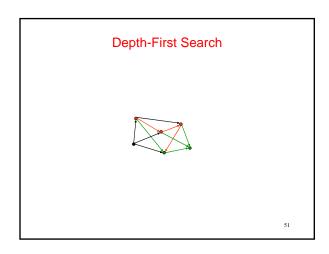


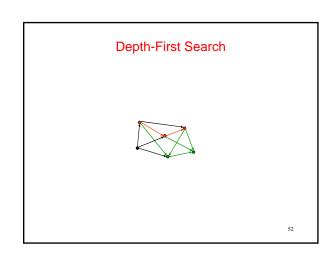


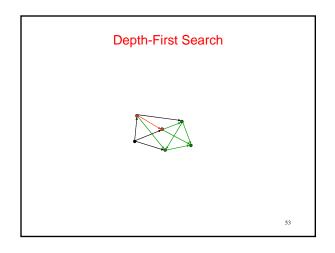


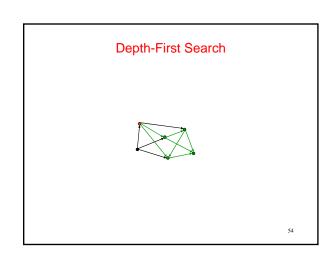


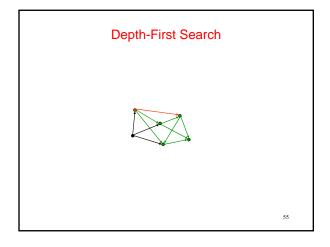


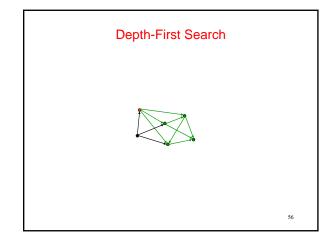


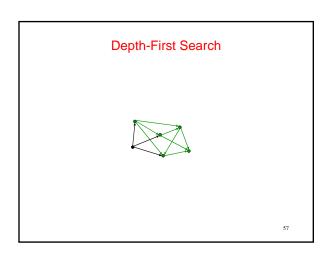


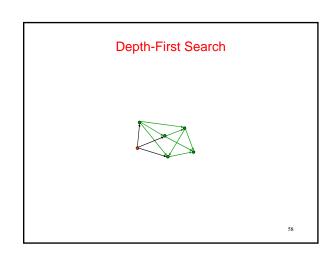


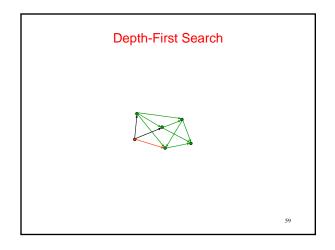


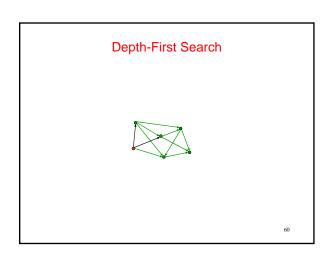


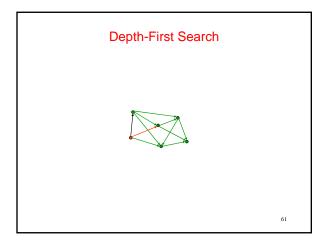


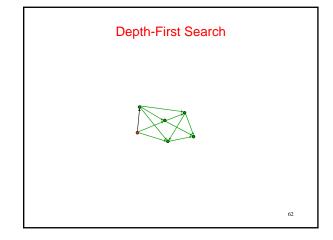


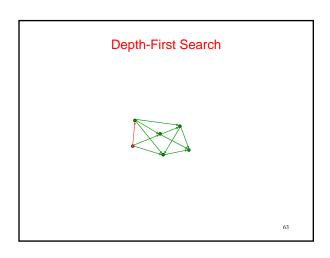


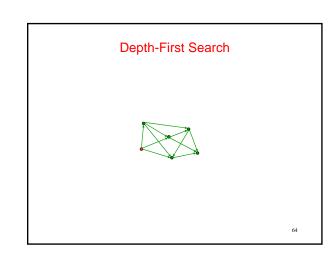


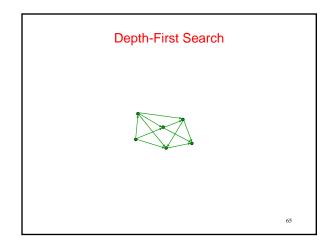


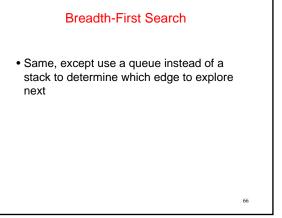


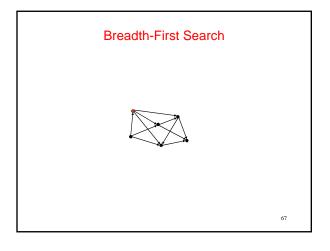


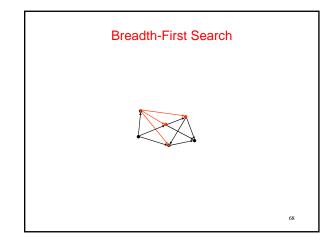


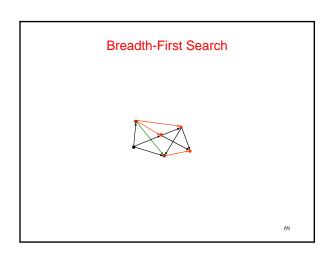


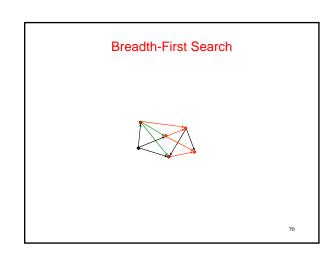


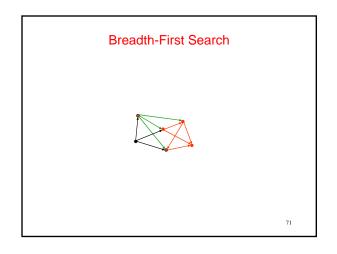


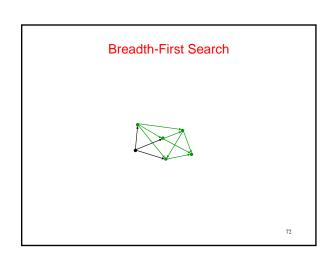


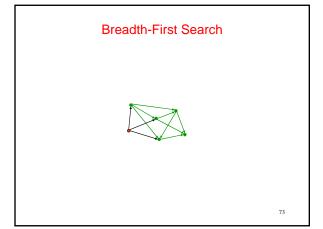


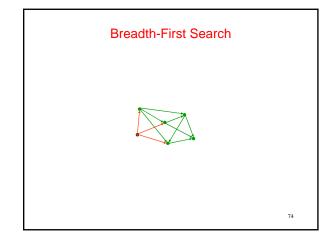


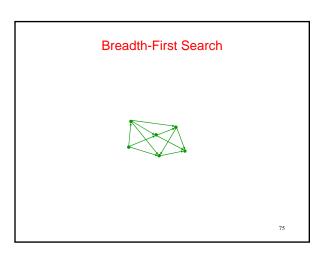






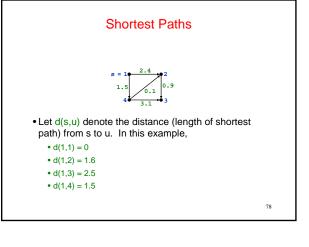






Suppose you have a US Airways route map with intercity distances. You want to know the shortest distance from Ithaca to every city served by US Airways. This is known as the *single-source shortest path problem*.

Shortest Paths



Dijkstra's Algorithm

- Let $X = \{s\}$
 - X is the set of nodes for which we have already determined the shortest path
- For each node $u \notin X$, define D(u) = w(s,u)
 - -D(2) = 2.4
 - $-D(3) = \infty$
 - -D(4) = 1.5

79

Dijkstra's Algorithm

- Find u ∉ X such that D(u) is minimum, add it to X
 at that point, d(s,u) = D(u)
- $\bullet \mbox{ For each node } v \not\in X \mbox{ such that } (u,v) \in E, \\ \mbox{ if } D(u) + w(u,v) < D(v), \mbox{ set } D(v) = D(u) + w(u,v) \\$
 - -D(2) = 2.4
 - $-D(3) = \infty$
 - -D(4) = 1.5

80

Dijkstra's Algorithm

- Find $u \notin X$ such that D(u) is minimum, add it to X at that point, d(s,u) = D(u) u = 4
- $\bullet \mbox{ For each node } v \not\in X \mbox{ such that } (u,v) \in E, \\ \mbox{ if } D(u) + w(u,v) < D(v), \mbox{ set } D(v) = D(u) + w(u,v) \\$
 - -D(2) = 2.4
 - $-D(3) = \infty$
 - -D(4) = 1.5 = d(1,4)

81

83

Dijkstra's Algorithm

- Find $u \notin X$ such that D(u) is minimum, add it to X at that point, d(s,u) = D(u) u = 4
- For each node $v \notin X$ such that $(u,v) \in E$, if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
 - D(2) = **≥**.4 1.6
 - -D(3) = 4.6
 - -D(4) = 1.5 = d(1,4)

82

Dijkstra's Algorithm

- Find u ∉ X such that D(u) is minimum, add it to X

 at that point, d(s,u) = D(u)
- \bullet For each node v $\not\in$ X such that (u,v) \in E, if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
 - D(2) = **≥**. 1.6
 - D(3) = ➤ 4.6
 - -D(4) = 1.5 = d(1,4)

Dijkstra's Algorithm

- Find u ∉ X such that D(u) is minimum, add it to X

 at that point, d(s,u) = D(u) u = 2
- For each node $v \notin X$ such that $(u,v) \in E$, if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
 - $-D(2) = 24 \cdot 1.6 = d(1,2)$
 - -D(3) = 34.6
 - -D(4) = 1.5 = d(1,4)

Dijkstra's Algorithm

- Find u ∉ X such that D(u) is minimum, add it to X
 at that point, d(s,u) = D(u) u = 2
- For each node $v \notin X$ such that $(u,v) \in E$, if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
 - $-D(2) = 24 \cdot 1.6 = d(1,2)$
 - -D(3) = 2 2.5
 - -D(4) = 1.5 = d(1,4)

85

Dijkstra's Algorithm

- Find u ∉ X such that D(u) is minimum, add it to X
 at that point, d(s,u) = D(u)
- For each node $v \notin X$ such that $(u,v) \in E$, if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
 - $-D(2) = 2.4 \quad 1.6 = d(1,2)$
 - D(3) = **>**< **>**< **≥**< 2.5
 - -D(4) = 1.5 = d(1,4)

86

Dijkstra's Algorithm

- Find u ∉ X such that D(u) is minimum, add it to X
 at that point, d(s,u) = D(u) u = 3
- For each node $v \notin X$ such that $(u,v) \in E$, if D(u) + w(u,v) < D(v), set D(v) = D(u) + w(u,v)
 - $-D(2) = 24 \cdot 1.6 = d(1,2)$
 - $-D(3) = 346 \quad 2.5 = d(1,3)$
 - -D(4) = 1.5 = d(1,4)

87

Dijkstra's Algorithm

Proof of correctness – show that the following are invariants of the loop:

- For $u \in X$, D(u) = d(s,u)
- For $u \in X$ and $v \notin X$, $d(s,u) \le d(s,v)$
- For all u, D(u) is the length of the shortest path from s to u such that all nodes on the path (except possibly u) are in X

Implementation:

 Use a priority queue for the nodes not yet taken – priority is D(u)

88

Complexity

- Every edge is examined once when its source is taken into X
- A vertex may be placed in the priority queue multiple times, but at most once for each incoming edge
- Number of insertions and deletions into priority queue = m + 1, where m = |E|
- Total complexity = O(m log m)

89

Conclusion

- There are faster but much more complicated algorithms for single-source, shortest-path problem that run in time O(n log n + m) using something called Fibonacci heaps
- It is important that all edge weights be nonnegative – Dijkstra's algorithm does not work otherwise, we need a more complicated algorithm called Warshall's algorithm
- Learn about this and more in CS482