GUI Dynamics

Lecture 19
CS211 - Spring 2007

GUI Statics and GUI Dynamics

* Statics: what's drawn on the
screen

* Dynamics: user interactions

= Events

= Components + button-press, mouse-click, key-
+ buttons, labels, lists, sliders, press, ...

menus, = Listeners: an object that

= Containers: components that

contain other components

responds to an event
+ frames, panels, dialog boxes,

= Helper classes
. + Graphics, Color, Font,
= Layout managers: control
placement and sizing of
components

FontMetrics, Dimension

Dubllc

Dynamics Overview

*Dynamics = causing and responding to actions
= What actions?
+ Called events

+ Need to write code that “understands” what to do when an event
occurs

In Java, you specify what happens by providing an object that
“hears” the event
+ In other languages, you specify what happens in response to an
event by providing a function
*What objects do we need?
= Events

= Event listeners

Brief Example Revisited

private JButton myButton = new JButton(“Push Me!™)

myButton. addActionListener(new Actanlstener() €
void actionPerformed(ActionEvent
Tabel setText("Count:

* + count);

inport java.awt.event.*

Brief Example Revisited
import ja\/ax swmg 2

public class Intro extends JFrame {
private int count = 0

private JButton myButton = new JButton(“Push Me!™)
public_Intro()

private Jiabel label = new Jlabel(“Count: * + count):
setDefaul tCloseOperation(JFrane.EXIT ON_CLOS
Setlayout(new Flowlayout(FlowLayout LEFD); /)set layout manager
add(nyButton); //add components
add(label);
label .setPreferredSize(new Dimension(60, 10));

myButton.addActionListener(new ActionListener() {

lic void actionPerformed(ActionEvent e) {
ount++:
Tabel . setText("Count

+ count);

¥

public static void main(String[] args) {
y
Ulanager . s

et UlNanager-
} catch (Exceptan exo) {F
few Intro

e Timeline

The Java Event Model

= User (or program) does something to a component
+ clicks on a button, resizes a window,

= Java issues an event object describing the event
= A special type of object (a listener) “hears” the event
+ The listener has a method that “handles” the event
+ The handler does whatever the programmer programmed
*What you need to understand

= Events: How components issue events

= Listeners: How to make an object that listens for events

= Handlers: How to write a method that responds to an event

Events
* An Event is a Java object * Most events are in
= |t represents an action that has Java.awt.event
occurred — mouse clicked, = Some events are in
button pushed, menu item Javax.swing.event

selected, key pressed, ... « All events are subclasses of
= Events are normally created by AWTEvent

the Java runtime system

« You can create your own
events, but this is unusual AWTEvent

ActionEvent
ComponentEvent
InputEvent

Types of Events

*Each Swing Component can generate one or more
types of events

= The type of event depends on the component
+ Clicking a JButton creates an ActionEvent
+ Clicking a JCheckbox creates an 1temEvent

= The different kinds of events include different information about

what has occurred
+ All events have method getSource() which returns the object
(e.g., the button or checkbox) on which the Event initially occurred

+ An I'temEvent has a method getStateChange() that returns an

integer indicating whether the item (e.g., the checkbox) was
selected or deselected

Event Listeners

sActionListener, MouselListener,
WindowListener, ...

e Listeners are Java interfaces
= Any class that implements that interface can be used as a listener

*To be a listener, a class must implement the interface
= Example: an ActionListener must contain a method
public void actionPerformed(ActionEvent e)

Implementing Listeners

* Which class should be a listener?

= Java has no restrictions on this, so any class that implements
the listener will work

 Typical choices

= Top-level container that contains whole GUI
public class GUI implements ActionListener
= Inner classes to create specific listeners for reuse
private class LabelMaker implements ActionListener

= Anonymous classes created on the spot
b.addActionListener(new ActionListener() {-..});

Listeners and Listener Methods

* When you implement an interface, you must implement all the
interface’s methods

= Interface ActionListener has one method:
void actionPerformed(ActionEvent e)

= Interface MouselInputListener has seven methods:
void mouseClicked(MouseEvent e)
void mouseEntered(MouseEvent e)
void mouseExited(MouseEvent e)
void mousePressed(MouseEvent e)
void mouseReleased(MouseEvent e)
void mouseDragged(MouseEvent e)
void mouseMoved(MouseEvent e)

Registering Listeners

* How does a component know which listener to use?

* You must register the listeners
= This connects listener objects with their source objects
= Syntax: component.addTypeListener(Listener)
= You can register as many listeners as you like

* Example:

b.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
count++;
label .setText(generateLabel ());

3
D:

Example 1: The Frame is the Listener

inport javax.swing.*; import java.awt.*; import java.awt.event.*;
public class ListenerExamplel extends JFrame implements ActionListener {
private int count;
private JButton b = new JButton(“Push Me!™);
private JLabel label = new JLabel(“Count: " + count);
public static void main(String[] args) {
JFrame f = new ListenerExamplel();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200,100);
f.setVisible(true);
b
public ListenerExamplel() {
setLayout(new FlowLayout(FlowLayout.LEFT));
add(b); add(label);
b.addActionListener(this);

s

public void actionPerformed(ActionEvent e) {
count++;
label .setText("Count: + count);

¥

Example 2: The Listener is an Inner Class

vate int count;
private JButton b = new JButton(“Push Me!");
private Jlabel label = new Jiabel("Count: ™ + count);
class Helper implements ActionListener {
public void actionPerformed(ActionEvent e) {
count#+;
label .setText("Count: ™ + count);
B
3
public static void main(String[] args) {
JFrame f = new ListenerExample2();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200,100); F.setVisible(true);

ks
public ListenerExample2() {
setLayout(new FlowLayout(FlowLayout.LEFT));
add(b); add(label); b.addActionListener(new Helper());

Example 3: The Listener is an Anonymous Class

import javax.swing.*; import java.awt.*; import java.awt.event.*;
public class ListenerExample3 extends JFrame {
private int count;
private JButton b = new JButton("'Push Me!™);
private JLabel label = new JLabel('Count: " + count);
public static void main (String[] args) {
JFrame f = new ListenerExample3():
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200,100); f.setVisible(true);
b
public ListenerExample3() {
setLayout(new FlowLayout(FlowLayout.LEFT));
add(b); add(label);
b.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {
count++;
label .setText("Count: ™ + count);

»:

¥
¥
14
Adapters
* Some listeners (e.g., Mouse InputListener) have
lots of methods; you don’t always need all of them
= For instance, you may be interested only in mouse clicks
* For this situation, Java provides adapters
= An adapter is a predefined class that implements all the
methods of the corresponding Listener
+ Example: Mouse InputAdapter is a class that implements all
the methods of interface Mouse InputListener
= The adapter methods do nothing
= To easily create your own listener, you extend the adapter
class, overriding just the methods that you actually need
16

Using Adapters

import javax.swing.*; import javax.swing.event.*;
import java.awt.*; import java.awt.event.*;
public class AdapterExample extends JFrame {
private int count; private JButton b = new JButton(“Mouse Me!™);
private JLabel label = new JLabel(Count: " + count);
class Helper extends MouselnputAdapter {
public void mouseEntered(MouseEvent e) {
count++;
label .setText("Count: ™ + count);
3
3
public static void main(String[] args) {
JFrame f = new AdapterExample():
f.setDefaul tCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200,100); f.setVisible(true);

public AdapterExample() {
setLayout(new FlowLayout(FlowLayout.LEFT));
add(b); add(label); b.addMouseListener(new Helper());

Notes on Events and Listeners

* A single component can have many listeners

* Multiple components can share the same listener
= Can use event.getSource() to identify the component
that generated the event

* For more information on designing listeners, see
http://java.sun.com/docs/books/tutorial/
uiswing/events/generalrules.html

* For more information on designing GUls, see
http://java.sun.com/docs/books/tutorial/
uiswing/

GUI Drawing and Painting

For a drawing area, extend JPanel and override the method
public void paintComponent(Graphics g)

paintComponent contains the code to completely draw
everything in your drawing panel

Do not call paintComponent directly — instead, request that the
system redraw the panel at the next convenient opportunity by
calling myPanel .repaint()

repaint() requests a call paintComponent() “soon”
= repaint(ms) requests a call within ms milliseconds
+ Avoids unnecessary repainting
+ 16ms is a good default value

Java Graphics

* The Graphics class has methods for colors, fonts, and various
shapes and lines

setColor(Color c)

drawOval (int x, int y, int width, int height)
filloval(int x, int y, int width, int height)
drawLine(int x1, int yl, int x2, int y2)
drawString(String str, int x, int y)

* Take a look at

= java.awt.Graphics (for basic graphics)
= java.awt.Graphics2D (for more sophisticated control)

= The 2D Graphics Trail:
http://java.sun.com/docs/books/tutorial/2d/index.html

