Introduction

to GUIs
(Graphical User
Interfaces)

Lecture 18
CS211 - Spring 2007

Interactive Programs

* “Classic” view of computer
programs: transform inputs to
outputs, stop

* Event-driven programs:
interactive, long-running
= Servers interact with clients

= Applications interact with
user(s)

input

input output
events events

program

GUI Motivation

* Interacting with a program * Design...Which to pick?
= Program-Driven = Program called by another
+ Statements execute in program?
sequential, predetermined order = Program used at command line?
* Typically use keyboard or file = Program interacts often with user?
1/0, but program determines))
when that happens - Program used in window
+ Usually single-threaded environment?
= Event-Driven

+ Program waits for user input to * How does Java do GUIs?
activate certain statements

+ Typically uses a GUI (Graphical
User Interface)

+ Often multi-threaded

Java Support for Building GUIs

* Java Foundation Classes

= Classes for building GUIs

= Major components
+ awt and swing
+ Pluggable look-and-feel support
+ Accessibility API
+ Java 2D API
+ Drag-and-drop Support
+ Internationalization

* Our main focus: Swing
= Building blocks of GUIs
+ Windows & components
+ User interactions
= Built upon the AWT (Abstract
Window Toolkit)
+ Java event model

Java Foundation Classes

* Pluggable Look-and-Feel Support
= Controls look-and-feel for particular windowing environment
= E.g., Java, Windows, Motif, Mac
 Accessibility API
= Supports assistive technologies such as screen readers and Braille
* Java 2D
= Drawing
= Includes rectangles, lines, circles, images, ...
* Drag-and-drop
= Support for drag and drop between Java application and a native
application

* Internationalization
= Support for other languages

GUI Statics and GUI Dynamics

* Statics: what's drawn on the
screen
= Components
+ buttons, labels, lists, sliders,
menus, ...
= Containers: components that
contain other components
+ frames, panels, dialog boxes, ...
= Layout managers: control
placement and sizing of
components

* Dynamics: user interactions
= Events
+ button-press, mouse-click, key-
press, ...
= Listeners: an object that
responds to an event
= Helper classes
+ Graphics, Color, Font,
FontMetrics, Dimension, ...

Creating a Window

import javax.swing.*

public class Basicl {

public static void main(String[] args) {
//create the window
JFrame f = new JFrame('Basic Test!™);
//quit Java after closing the window
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setSize(200, 200); //set size in pixels
f.setVisible(true); //show the window

L =1 < |

Creating a Window Using a Constructor

import javax.swing.*;
public class Basic2 extends JFrame {

public static void main(String[] args) {
new Basic2();

public Basic2(Q) {
setTitle("Basic Test2!'); //set the title
//quit Java after closing the window
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
setSize(200, 200); //set size in pixels
setVisible(true); //show the window

A More Extensive Example

import javax.swing.*;
import java.awt.
inport java_awt.event.*;

K

public class Intro extends JFrame {

D fmene o @
brivate JButton mybution = new JButton("Push ety
private JLabel 1abet Shen JLabel ("Count: ™ + count);

publie intraQ) {
etbefaultCloseOperation(JFrame.EXIT_ON_CLOSE):
Setlayout(new FlonLayout (Flowlayout. [EFTY): 7/set layout manager
add(myButton); //add components
add(label
Tober setPreferredsize(new Dimension(60, 10));

myButton.addActionListener (new Ac(lunLls(ener() {
public void actionperformed(Actionvent e) {
count-
Tabel - setText("Count: * + count);

ble(true);

public static void main(String[] args) {
try {
UlManager . setL UlManager lassNane()) ;
} catch (Exception exc) {}
new IntroQ);

GUI Statics

* Determine which components you want

* Choose a top-level container in which to put the
components (JFrame is often a good choice)

* Choose a layout manager to determine how
components are arranged

* Place the components

Components = What You See

* Visual part of an interface

* Represents something with position and size

e Can be painted on screen and can receive events
¢ Buttons, labels, lists, sliders, menus,

Component Examples

import javax.swing.*;
import java.awt.*;

public class ComponentExamples extends JFrame {

public ComponentExamples()
setlayout(new Flowdayourt(Flowayout LEFT));
)N

| p)
add(new JComboBox(new String[] { A", "B", "C" }));
add(new JCheckBox("JCheckBox'));
add(new JSIider(0, 8
add(new JColorChooser())*

setDefay™
pack(); T g v
setVisikt

b
public stat]
try {
UlMar,

} catch | [i s n] s
new Comp:

More Components

* JFileChooser: allows choosing a file
* JLabel: a simple text label

* JTextArea: editable text

* JTextField: editable text (one line)

e JScrolIBar: a scrollbar

» JPopupMenu: a pop-up menu

* JProgressBar: a progress bar

Containers

* A container is a component that
= Can hold other components
= Has a layout manager

* Heavyweight vs. lightweight

= A heavyweight component
interacts directly with the host
system

= JWindow, JFrame, and JDialog
are heavyweight

= Except for these top-level
containers, Swing components are
almost all lightweight

+ JPanel is lightweight

* There are three basic top-level
containers
= JWindow: top-level window with no
border
= JFrame: top-level window with
border and (optional) menu bar
= JDialog: used for dialog windows

* Another important container
= JPanel: used mostly to organize
objects within other containers

* Lots more!
13
A Component Tree
JFrflme
JPanel
~_
JPanel JPa‘neI
\
JPanel JPanel {2,000 I_,. =
JPanel JPaTeI JPanel JPanel
ComboBox (km) JComboBox (mi)

JTextField (2000)
Jslider

JTextField (3226)
JSlider

Layout Managers

* A layout manager controls
placement and sizing of
components in a container

= If you do not specify a layout
manager, the container will use a
default:
+ JPanel default = FlowLayout
+ JFrame default = BorderLayout

+ Five common layout managers:
BorderLayout, BoxLayout,
FlowLayout, GridBagLayout,
GridLayout

* General syntax
container.setLayout(new LayoutMan());

* Examples:

Jpanel pl =
new JPanel (new BorderLayout());

JPanel p2 = new JPanel();
p2.setLayout(new BorderLayout());

Some Example Layout Managers

* BorderLayout
= Divides window into five areas: North,
South, East, West, Center

* FlowLayout
= Components placed from left to
right in order added
= When a row is filled, a new row is

started Adding components
= Lines can be centered, left-justified = FlowLayout and GridLayout use
or right-justified (see FlowLayout container.add(component)

constructor) = BorderLayout uses
= See also BoxLayout container.add(component, index)
where index is one of

+ BorderLayout.North
BorderLayout.South
BorderLayout.East
BorderLayout.West
BorderLayout.Center

* GridLayout
= Components are placed in grid :
pattern .
= number of rows & columns .
specified in constructor
= Grid is filled left-to-right, then top-
to-bottom

FlowLayout Example

import javax.swing.*;
import java.awt.*;

public class Staticsl {
new S1GUIQ;
3

class S1GUI {
private JFrame f;
public S1GUIQ) {

f.setSize(500, 200);

f.setVisible(true);

public static void main(String[] args) {

f = new JFrame("'Statics

| e Smaticst
et | iz || omen3 || e
vmens || punmz | mumens

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

f.setLayout(new FlowLayout(FlowLayout.LEFT));
for (int b = 1; b < 9; b++)
f.add(new JButton(“'Button " + b));

BorderLayout Example

import javax. swlng s

import java.awt.

public class Statics2 {
public static void main(String[] args) { new

class ColoredJPanel extends JPanel {
Color color;
col dJPanel(Color cotor) {
colol

T
public void paintComponent(Graphics g) {
-setColor(color);
g-fillRect(0, 0, 400, 400);

GridLayout Example

import. Javax swing. PR
import java.awt.*

public class Statics3 T
public static void main(String[] args) { new S36UI(8

class S36UI extends JFrame {
static final int =
static final
static final

t SIZE 8 12
int GAP =

setDefaul tCloseOperation(JFram
setLayuut(new GridLayout (DIl
for (int ¥ = DIM * DIM;

XIT_ON_CLOSE) ;

GAP, GAP));
++) add(new’ fiyPar

class MyPanel extends JPanel
MyPanel) { setPreferredSize(new Dimension(SIZE, SIZE)); }
ublic void paintComponent(Graphics g) {
Float gradient
((floatVath, abs(ge[x() 5:35EYON/ (Float) (SIZE + GAP) * DIW);

g. lor(new Color(0f
p CHOIEEE . 0, gethdth() getHelgh(())
¥
)
20
AWT and Swing
* AWT * Swing
= |nitial GUI toolkit for Java = More recent (since Java 1.2)
= Provided a “Java” look and feel GUI toolkit
= Basic API: java.awt.* = Added functionality (new
components)
= Supports look and feel for
various platforms (Windows,
Motif, Mac)
= Basic API: javax.swing.*
* Did Swing replaced AWT?
= Not quite: both use the AWT
event model
22

¥
class S2GUI extends JFrame {
publ
se
setDe
setSize(400,
add(new ColoredJPanel(Color RED), BorderLayout.NORTH);
add(new ColoredJPanel (Color.GREEN), BorderLayout.SOUTH);
add(new ColoredJPanel(Color.BLUE), BorderLayout.WEST);
add(new ColoredJPanel(Color.YELLOW), BorderLayout.EAST);
dd (n loredJPanel (Color.BLACK), BorderLayout.CENTER);
isible(true);
¥
b
9
More Layout Managers
* CardLayout ¢ Custom
= Tabbed index card look from = Can define your own layout
Windows manager
= But best to try Java's layout
+ GridBagLayout managers first...
= Most versatile, but
complicated * Null
= No layout manager
= Programmer must specify
absolute locations
= Provides great control, but can
be dangerous because of
platform dependency
21
Code Examples
« Intro.java * ComponentExamples.java
= Button & counter = Sample components
* Basicl.java * Statics1.java
= Create a window = FlowLayout example
* Basic2.java « Statics2.java
= Create a window using a = BorderLayout example
constructor

« Statics3.java
* Calculator.java = GridLayout example
= Shows use of JOptionPane . LayoutDemo.java
to produce standard dialogs » Multiple layouts

