Standard ADTs

Lecture 15
CS211 — Spring 2007

Abstract Data Types (ADTS)

A method for achieving * In Java, an interface corresponds

abstraction for data structures well to an ADT

and algorithms = The interface describes the
operations, but says nothing at all

ADT = model + operations about how they are implemented

Describes what each * Example: Stack interface/ADT

operation does, but not how it
does it public interface Stack {

public void push(Object x);
public Object pop(Q);

Queues & Priority Queues

* ADT Queue * ADT PriorityQueue
= Operations: = Operations:
void enQueue(Object X); void insert(Object x);
Object deQueue(); Object getMax();
Object peek(Q); Object peekAtMax();
boolean isEmpty(); boolean isEmpty();
void makeEmpty(); void makeEmpty();
* Where used: * Where used:
= Simple job scheduler (e.g., = Job scheduler for OS
print queue) = Event-driven simulation
= Wide use within other

= Can be used for sorting
algorithms

= Wide use within other
algorithms

* An ADT is independent of its public Object peek();
implementation public boolean isEmpty();
public void makeEmpty();
3
2
Sets
* ADT Set

= Operations:
void insert(Object element);
boolean contains(Object element);
void remove(Object element);
boolean isEmpty();
void makeEmpty();

* Where used:
= Wide use within other algorithms

* Note: no duplicates allowed
= A “set” with duplicates is sometimes called a multiset or bag

Dictionaries

* ADT Dictionary
= Operations:

void insert(Object key, Object value);
void update(Object key, Object value);
Object find(Object key);

void remove(Object key);

boolean isEmpty();

void makeEmpty();

* Think of: key = word; value = definition
* Where used:

= Symbol tables

= Wide use within other algorithms

Data Structure Building Blocks

* These are implementation “building blocks” that are
often used to build more-complicated data structures
= Arrays
= Linked Lists
+ Singly linked
+ Doubly linked
= Binary Trees
= Graphs
+ Adjacency matrix
+ Adjacency list

Array Implementation of Stack

c

¥

//Better for garbage collection if makeEmpty() also

lass ArrayStack implements Stack {

private Object[] array: //Array that h
private int index = 0; //First empty s

public ArrayStack (int maxSize)
{ array = new Object[maxSize]; }

public void push(Object x) { array[inds
public Object pop() { return array[--i
public Object peek() { return array[in
public boolean isEmpty() { return inde:
public void makeEmpty() { index = 0; }

cleared the array

olds the Stack
lot in Stack

ex++] = x; }
ndex]; }
dex-1]; 3
x == 05 }

O(1) worst-
case time for
each

operation

Linked List Implementation of Stack

class ListStack inplements Stack {
private Node head = null; //Head of list that
//holds the Stack

O(1) worst-
case time for
each
public void push(Object x) { head = new Node(x, head); } operation
public Object pop() {

Node temp = head;

head = head.next;

return temp.data;
T
public Object peek() { return head.data; }
public boolean isEmpty() { return head == null; }
public void makeEmpty() { head = null; }

head

i e s e s e U

Queue Implementations

* Possible implementations

head Linked List st

last

)
NN NNEREREEE

Array with head always at A[0]
(deQueue() becomes expensive)
(can overflow)

head last

I)
LT

Array with wraparound
(can overflow)

* Recall: operations are

= For linked-list
+ All operations are O(1)

= For array with head at A[0]
+ deQueue takes time O(n)
+ Other ops are O(1)
+ Can overflow

= For array with wraparound
+ All operations are O(1)
+ Can overflow

Choosing an Implementation

* What operations do | need to perform on the data?
= Insertion, deletion, searching, reset to initial state?
* How efficient do the operations need to be?
* Are there any additional constraints on the operations
or on the data structure?
= Can there be duplicates?
= When extracting elements, does order matter?
¢ |s there a known upper bound on the amount of data?
Or can it grow unboundedly large?

Goal: Design
* Operations

void insert(key, value)
void update(key, value)
Object find(key)
void remove(key)
boolean isEmpty()
void makeEmpty()

a Dictionary

Array implementation: Using an
array of (key,value) pairs

0o(1) Oo(n)
O(n) O(log n)
O(n) O(log n)
o(n) o(n)

n is the number of items
currently held in the dictionary

Hashing

* |dea is to compute an array
index via a hash function h Typical situation:
U = all legal identifiers

¢ U is the universe of keys

Typical hash function:
h converts each letter to a
number and we compute a
function of these numbers

e h:U—[0,....m-1]
where m = hash table size

* h should
= Be easy to compute
= Cause few collisions

= Have equal probability for
each table position

A Hashing Example

Analysis for Hashing with Chaining

* Analyzed in terms of load
factor & = n/m = * U is the average number of
(items in table)/(table size) items per table position = n/m
=A
* We count the expected
number of probes (key S = expected number of
comparisons) probes for a successful
search =1+ /2 =0())

* Goal: Determine U =
expected number of probes
for an unsuccessful search

* Suppose each word below * How do we resolve collisions?
has the following hashCode = use chaining: each table
jan 7 position is the head of a list
feb 0 = for any particular problem, this
mar 5 might work terribly
apr 2
4 . .
jrS:y ; * In practice, using a good hash
jul 3 function, we can assume
aug 7 each position is equally likely
sep 2
oct 5
13
Table Doubling
* We know each operation Table Doubling:

takes time O(1) where A=n/m « Set a bound for % (call it A,
* Whenever i reaches this

e Butisn't L = ©O(n)? bound we
= Create a new table, twice as
« What's the deal here? It's still big and
linear time! = Re-insert all the data

* Easy to see operations usually
take time O(1)
= But sometimes we copy the
whole table

Analysis of Table Doubling

¢ Suppose we reach
a state with n items

in a table of size m

Copying Work
and that we have

just completed a Everything has just n inserts
table doubling been copied

Half were copied n/2 inserts
previously
Half of those were n/4 inserts

copied previously

Total work n+n2+n/4+..=2n

Analysis of Table Doubling, Cont'd

* Total number of insert « Disadvantages of table
operations needed to reach doubling:
current table = copying work

+ initial insertions of items = Worst-case insertion time of

=2n+n=23ninserts O(n) is definitely achieved (but
rarely)
* Each insert takes expected
time O(LO) or O(1), so total = Thus, not appropriate for time
expected time to build entire critical operations
table is O(n)

Thus, expected time per
operation is O(1)

Java Hash Functions

« Most Java classes implement ¢ What hashCode () returns:

the hashCode () method = Integer:
+ uses the int value
* hashCode () returns an int * Float:

* converts to a bit representation
and treats it as an int

« Java’'s HashMap class uses = Short Strings:
h(X) = X'haShCOde() mod m + 37*previous + value of next
character
* h(X) in detail: = Long Strings:
int hash = X.hashCode(); + sample of 8 characters;
int index = (hash & OX7FFFFFFF) % m; 39*previous + next value

hashCode() Requirements

 Contract for hashCode () method:

= Whenever it is invoked in the same object, it must return the
same result

= Two objects that are equal must have the same hash code
= Two objects that are not equal should return different hash

codes, but are not required to do so

Hashtables in Java

e java.util .HashMap

¢ java.util .HashSet

* java.util _Hashtable * A node in each chain looks
like this:

¢ Use chaining

* Initial (default) size = 101

original hashCode (before mod m)
Allows faster rehashing and
(possibly) faster key comparison

* Load factor =, =0.75

* Uses table doubling
(2*previous+1)

Linear & Quadratic Probing

* These are techniques in which
all data is stored directly within

the hash table array

* Linear Probing

= Probe at h(X), then at
sh(X)+1
*h(X) +2
...
*h(X) +i

= Leads to primary clustering
+ Long sequences of filled cells

¢ Quadratic Probing

= Similar to Linear Probing in
that data is stored within the
table
= Probe at h(X), then at
* h(X)+1
+ h(X)+4
* h(X)+9
...
+ h(X)+ i2
= Works well when
*+)1<05
+ Table size is prime

Hashtable Pitfalls

* Good hash function is required

* Watch the load factor (1), especially for Linear &
Quadratic Probing

Dictionary Implementations

*Ordered Array

= Better than unordered array because Binary Search can be

used

e Unordered Linked-List
= Ordering doesn't help

*Hashtables

= O(1) expected time for Dictionary operations

