
Standard ADTs

Lecture 15
CS211 – Spring 2007

2

Abstract Data Types (ADTs)

A method for achieving
abstraction for data structures
and algorithms

ADT = model + operations

Describes what each
operation does, but not how it
does it

An ADT is independent of its
implementation

In Java, an interface corresponds
well to an ADT

The interface describes the
operations, but says nothing at all
about how they are implemented

Example: Stack interface/ADT

public interface Stack {
public void push(Object x);
public Object pop();
public Object peek();
public boolean isEmpty();
public void makeEmpty();

}

3

Queues & Priority Queues

ADT Queue
Operations:
void enQueue(Object x);
Object deQueue();
Object peek();
boolean isEmpty();
void makeEmpty();

Where used:
Simple job scheduler (e.g.,
print queue)
Wide use within other
algorithms

ADT PriorityQueue
Operations:
void insert(Object x);
Object getMax();
Object peekAtMax();
boolean isEmpty();
void makeEmpty();

Where used:
Job scheduler for OS
Event-driven simulation
Can be used for sorting
Wide use within other
algorithms

4

Sets

ADT Set
Operations:
void insert(Object element);
boolean contains(Object element);
void remove(Object element);
boolean isEmpty();
void makeEmpty();

Where used:
Wide use within other algorithms

Note: no duplicates allowed
A “set” with duplicates is sometimes called a multiset or bag

5

Dictionaries

ADT Dictionary
Operations:
void insert(Object key, Object value);
void update(Object key, Object value);
Object find(Object key);
void remove(Object key);
boolean isEmpty();
void makeEmpty();

Think of: key = word; value = definition
Where used:

Symbol tables
Wide use within other algorithms

6

Data Structure Building Blocks

These are implementation “building blocks” that are
often used to build more-complicated data structures

Arrays
Linked Lists

Singly linked
Doubly linked

Binary Trees
Graphs

Adjacency matrix
Adjacency list

7

Array Implementation of Stack

class ArrayStack implements Stack {

private Object[] array; //Array that holds the Stack
private int index = 0; //First empty slot in Stack

public ArrayStack (int maxSize)
{ array = new Object[maxSize]; }

public void push(Object x) { array[index++] = x; }
public Object pop() { return array[--index]; }
public Object peek() { return array[index-1]; }
public boolean isEmpty() { return index == 0; }
public void makeEmpty() { index = 0; }

}
//Better for garbage collection if makeEmpty() also

cleared the array

max-1

3
2
1
0

4

index

O(1) worst-
case time for
each
operation

8

Linked List Implementation of Stack

class ListStack implements Stack {
private Node head = null; //Head of list that

//holds the Stack

public void push(Object x) { head = new Node(x, head); }
public Object pop() {

Node temp = head;
head = head.next;
return temp.data;

}
public Object peek() { return head.data; }
public boolean isEmpty() { return head == null; }
public void makeEmpty() { head = null; }

}

head

O(1) worst-
case time for
each
operation

Note that array
implementation can
overflow, but the
linked list version
cannot

9

Queue Implementations

Possible implementations Recall: operations are enQueue,
deQueue, peek,…

For linked-list
All operations are O(1)

For array with head at A[0]
deQueue takes time O(n)
Other ops are O(1)
Can overflow

For array with wraparound
All operations are O(1)
Can overflow

Linked List
head last

Array with wraparound
(can overflow)

head last

Array with head always at A[0]
(deQueue() becomes expensive)

(can overflow)

last

10

Choosing an Implementation

What operations do I need to perform on the data?
Insertion, deletion, searching, reset to initial state?

How efficient do the operations need to be?
Are there any additional constraints on the operations
or on the data structure?

Can there be duplicates?
When extracting elements, does order matter?

Is there a known upper bound on the amount of data?
Or can it grow unboundedly large?

11

Goal: Design a Dictionary

Operations

void insert(key, value)
void update(key, value)
Object find(key)
void remove(key)
boolean isEmpty()
void makeEmpty()

Array implementation: Using an
array of (key,value) pairs

Unsorted Sorted
insert O(1) O(n)
update O(n) O(log n)
find O(n) O(log n)
remove O(n) O(n)

n is the number of items
currently held in the dictionary

12

Hashing

Idea is to compute an array
index via a hash function h

U is the universe of keys

h: U → [0,…,m-1]
where m = hash table size

h should
Be easy to compute
Cause few collisions
Have equal probability for
each table position

Typical situation:
U = all legal identifiers

Typical hash function:
h converts each letter to a
number and we compute a
function of these numbers

13

A Hashing Example

Suppose each word below
has the following hashCode

jan 7
feb 0
mar 5
apr 2
may 4
jun 7
jul 3
aug 7
sep 2
oct 5

How do we resolve collisions?
use chaining: each table
position is the head of a list
for any particular problem, this
might work terribly

In practice, using a good hash
function, we can assume
each position is equally likely

14

Analysis for Hashing with Chaining

Analyzed in terms of load
factor λ = n/m =
(items in table)/(table size)

We count the expected
number of probes (key
comparisons)

Goal: Determine U =
expected number of probes
for an unsuccessful search

U is the average number of
items per table position = n/m
= λ

S = expected number of
probes for a successful
search = 1 + λ/2 = O(λ)

15

Table Doubling

We know each operation
takes time O(λ) where λ=n/m

But isn’t λ = Θ(n)?

What’s the deal here? It’s still
linear time!

Table Doubling:
Set a bound for λ (call it λ0)
Whenever λ reaches this
bound we

Create a new table, twice as
big and
Re-insert all the data

Easy to see operations usually
take time O(1)

But sometimes we copy the
whole table

16

Analysis of Table Doubling

Suppose we reach
a state with n items
in a table of size m
and that we have
just completed a
table doubling

Copying Work

Everything has just
been copied

n inserts

Half were copied
previously

n/2 inserts

Half of those were
copied previously

n/4 inserts

… …
Total work n + n/2 + n/4 + … = 2n

17

Analysis of Table Doubling, Cont’d

Total number of insert
operations needed to reach
current table = copying work
+ initial insertions of items
= 2n + n = 3n inserts

Each insert takes expected
time O(λ0) or O(1), so total
expected time to build entire
table is O(n)

Thus, expected time per
operation is O(1)

Disadvantages of table
doubling:

Worst-case insertion time of
O(n) is definitely achieved (but
rarely)

Thus, not appropriate for time
critical operations

18

Java Hash Functions

Most Java classes implement
the hashCode() method

hashCode() returns an int

Java’s HashMap class uses
h(X) = X.hashCode() mod m

h(X) in detail:
int hash = X.hashCode();
int index = (hash & 0x7FFFFFFF) % m;

What hashCode() returns:
Integer:

uses the int value
Float:

converts to a bit representation
and treats it as an int

Short Strings:
37*previous + value of next
character

Long Strings:
sample of 8 characters;
39*previous + next value

19

hashCode() Requirements

Contract for hashCode() method:
Whenever it is invoked in the same object, it must return the
same result
Two objects that are equal must have the same hash code
Two objects that are not equal should return different hash
codes, but are not required to do so

20

Hashtables in Java
java.util.HashMap
java.util.HashSet
java.util.Hashtable

Use chaining

Initial (default) size = 101

Load factor = λ0 = 0.75

Uses table doubling
(2*previous+1)

A node in each chain looks
like this:

hashCode key value next

original hashCode (before mod m)
Allows faster rehashing and
(possibly) faster key comparison

21

Linear & Quadratic Probing

These are techniques in which
all data is stored directly within
the hash table array

Linear Probing
Probe at h(X), then at

h(X) + 1
h(X) + 2
…
h(X) + i

Leads to primary clustering
Long sequences of filled cells

Quadratic Probing
Similar to Linear Probing in
that data is stored within the
table
Probe at h(X), then at

h(X)+1
h(X)+4
h(X)+9
…
h(X)+ i2

Works well when
λ < 0.5
Table size is prime

22

Hashtable Pitfalls

Good hash function is required

Watch the load factor (λ), especially for Linear &
Quadratic Probing

23

Dictionary Implementations

Ordered Array
Better than unordered array because Binary Search can be
used

Unordered Linked-List
Ordering doesn’t help

Hashtables
O(1) expected time for Dictionary operations

