lteration &
Inner Classes

Lecture 14
CS211 — Spring 2007

Announcements

Prelim tonight!

Recall: Linear Search

boolean linearSearch(Comparable[] a, Object v) {
for (int i = 0; i < a.length; i++) {
if (a[i]-compareTo(v) == 0) return true;

return false;

3

* Relies on data being stored in a 1D array
= Will not work if data is stored in another data structure such as a 2D
array, list, stack, queue, ...
* All linear search really needs is:
= Are there more elements to look at?
= If so, get me the next element

Goal: Generic Linear Search

Linear search

* Data is contained jn some object
* Object has an adapter that permits data to be enumerated in
some order
* Adapter has two buttons
= boolean hasNext(): are there more elements?
= Object next(): if so, give me a new element that has not been
enumerated so far

Linear Search

* First version:
= Input was int[], used == to compare elements

* More generic version:
= Input was Comparable[], used compareTo()

* Is there a still more generic version that is
independent of the data structure?
= For example, works even with Comparable[][1]

¢ |In other words, how should we iterate?
= Goal: perform some action on each item in a collection

Strategy I: Copy to an Array

* Copy the entire collection into Alternate version: Provide an

an array array-like interface
= Then iterate over the array = numltems()
= getltem(int i)
» Good
= Straightforward to implement * Bad
= |t can be expensive to
*Bad determine the it item

= |t doesn't always make sense
to refer to the i item in a
collection

= Can involve a lot of copying
+ A lazy method might be better

Strategy II: Iteration-State as Part of Collection

* The collection itself keeps *Bad
track of iteration = Just one iteration active at a
= Implies need for methods time
equivalent to = Makes it hard to share the
+void resetlteration() collection

+ boolean hasNext()
+Object getNext()

Sharks and Remoras

Iterator implementation
is like a remora Data class is like shark

A single shark must allow many remoras to hook to it

Strategy lll: 1'terator as a Separate Object

* Create an lterator object * Good
= |t maintains the state of the = Can have multiple iterator
iteration objects associated with one
collection
« Java provides an interface = Standard interface for all
(java.util. lterator) for iterations

this purpose
* Bad
= The iterator object has to know
a lot about the internal
structure of the collection
+ We'll see how to use inner
classes to fix this
|
Remora teeth

Iterator Interface

e java.util.lterator

= Linear search can be written
once and for all using Iterator

interface interface Iterator {
public boolean hasNext();
« Any data structure that wants public Object next();
to support iteration should //0ptional
provide an implementation of 3 publlich/otduerove Ok
Iterator

= We look at three ways to
implement Iterator
+ Using a separate class
+ Using an inner class
+ Using an anonymous inner class

Enumeration Interface

interface Enumeration {
boolean hasMoreElements();
Object nextElement();

3

* You may see some code that uses the Enumeration interface
instead of the 1terator interface
= Enumeration was part of the earliest versions of Java
= Similar functionality to Iterator (no remove method)
= Iterator is preferred

Iterable Interface

 Java also provides a standard interface
(Java. lang. I'terable) for anything that can be
iterated

interface lterable {
public lterator iterator();
3

* An object that implements Iterable can be used in
an enhanced for-loop (later in lecture)

Generic Linear Search

Array version

boolean linearSearch (Object[] a, Object v) {
for (int i = 0; 1 < a.length; i++) {
if (a[i].equals(v)) return true;

return false;

Iterator version

boolean linearSearch (lterator it, Object v) {
while (it.hasNext()) {
if (it.next().equals(v)) return true;

return false;

¥

How Do We Create an lterator?

¢ Iterator is a Java interface, so we must create a
class that implements 1terator

* To create an Iterator for class X, we can
= Use a separate class
= Use an inner class within X
= Use an anonymous inner class within X

An Array lterator (Version 1)

class Arraylterator implements lterator {
private Object[] data;
private int index = 0; //index of next element

public Arraylterator (Object[] a) {
data = a;

3
public boolean hasNext() {
return (index < data.length);

3

public Object next() {
if (this.hasNext()) return data[index++];
else throw new NoSuchElementException();

public void remove() {
throw new UnsupportedOperationException();

Using the Array Iterator

String[] a = {"Hello", "world"};

//Printing

Iterator iter = new Arraylterator(a);

while (iter.hasNext()) {
System.out.printin(iter.next());

}

//Searching

iter = new Arraylterator(a);

if linearSearch(iter,"world™) {
System.out.printin(“found!");

3

I terator Features

*Can create as many iterators as needed

= Multiple iterators over same data set are fine (as long as the
data set isn’t changed during iteration)

*Works for most data structures
= Example: 2D arrays
+ Can keep two cursors, one for row, one for column
+ Standard orders of enumeration

class Array2DlIterator implements lterator {
private Object[][] data;
private int rowlndex = 0, collndex = 0;

public Array2Dlterator(Object[][] a) { data = a; }

public boolean hasNext() {
while (rowlndex < data.length &&
collndex >= data[rowlndex].length) {
rowlndex++; collndex = 0; //if end of row

return (rowlndex < data.length &&
collndex < data[rowlndex].length);

3

public Object next() {
if (hasNext()) return data[rowlndex][colIndex++];
else throw new NoSuchElementException();

public void remove() {
throw new UnsupportedOperationException();

Code for Sharks and Remoras

class Shark implements lIterable {
public Object[] data;
public Shark (Object[] a) { data = a; }
public lIterator iterator() { return new Remora(this); }
3
class Remora implements Iterator {
private int index = 0;
private Shark shark;
public Remora(Shark s) { shark = s; }
public boolean hasNext() {
return (index < shark.data.length);
H
public Object next() {
if (hasNext()) return shark.data[index++];
else throw new NoSuchElementException();

public void remove) {
throw new UnsupportedOperationException();
3
>

Client Code

String[] a = {"Hello”, "world"};

Shark s = new Shark(a); //object containing data
boolean b = linearSearch(s.iterator(), "Hello™);
boolean c inearSearch(s.iterator(), "world");

boolean d = linearSearch(s.iterator(), "Bye");
Shark
N N
shark=s | shark =s shark =s
index =0 index =0 index =0
[BN J [N J [BN J
Remora Remora Remora 2

Critique: I'terator as Separate Class

* Good
= Shark class focuses on data
= Remora class focuses on iteration

* Bad
= Remora code relies on being able to access Shark variables
such as data array
+ What if data were declared private?
= Remora is specialized to Shark, but code appears outside
Shark class
+ We may change Shark class and forget to update Remora
= Clients can create Remoras without invoking iterator()
method of Shark
+ Better to have language construct to enforce convention

Better: 1terator as an Inner Class

¢ Inner class: Java allows you declare a class within
another class

* Inner classes can occur at many levels within another
class

= Member level
+ Inner class defined as if it were another field or method

= Statement level
+ Inner class defined as if it were a statement in a method

= Expression level
+ Inner class defined as it were part of an expression
+ Such expression-level classes are called anonymous classes

« Initially, we focus on member-level inner classes

class Shark implements Iterable {
private Object[] data;
public Shark(Object[] a) { data = a; }
public Iterator iterator() {return new Remora();}
private class Remora implements Iterator {

Example private int index = 0;
of an public boolean hasNext() {
Inner return (index < data.length);
Class }

public Object next() {
if (hasNext()) return data[index++];
else throw new NoSuchElementException();
3
public void remove() {
throw new UnsupportedOperationException();

3
3
3
Client String[] a = {"Hell “world"};
Code Shark s new Shark(a);

boolean b = linearSearch(s.iterator(), "Hello™);

23

Observations

 Inner class can be declared public, private, “package”, or
protected
= Inner class name is visible accordingly
« Instances of an inner class have access to all members of
containing outer-class instance
= Even members declared private

* Some inner-class syntax is weird

= Inner classes that are public can be instantiated by
outerObjectInstance.new InnerClass()

= Note that new Shark.Remora() does not work

= If you find yourself needing this syntax, you are probably using a
bad design

Inner Classes & this

* Keyword this in Remora class refers to Remora object-instance,
not outer Shark object-instance
* How do we get a reference to Shark from Remora?
= Here's one way:

class Shark {
private Shark kahuna;
public Shark() { kahuna = this; }

class Remora{ //inner class
-..kahuna... //inner class can access variable

= Here's another way: Shark. this refers to the outer Shark object-
instance

Anonymous Classes

* To permit programmers to write inner classes
compactly, Java permits programmers to write
anonymous classes

= Class does not have a name
= Must be instantiated at the point where it is defined

Anonymous Class Example

class Shark implements Iterable {

public Object[] data;

public Shark(Object[] a) { data = a; }

public Iterator iterator() {return new RemeraO-+}
i Iterator() {
private int index = 0;
public boolean hasNext() {

return (index < data.length);

3

public Object next() {
if (hasNext()) return data[index++];
else throw new NoSuchElementException();

public void remove() {
throw new UnsupportedOperationException();

Anonymous Class Example

class Shark implements lterable {
private Object[] data;
public Shark (Object[] a) { data = a; }
public Iterator iterator () {
return new Iterator () {
private int index = 0;
public boolean hasNext() {
return (index < data.length);

3

public Object next() {
if (hasNext()) return data[index++];
else throw new NoSuchElementException();

public void remove () {
throw new UnsupportedOperationException();

Anonymous Class Properties

* An anonymous class is an inner class with the usual
class body, but
= No class name
= No access specifier (i.e., no public/private/protected)
= No constructor
= No explicit extends or implements
+ It either extends one class or implements one interface

new classOrinterfaceName() { ...body... }

Anonymous Class Examples

* To specify an anonymous class (call it A) that extends class P

=new PO { -.- }; //create instance of A
=new P(42) { ... }; //calls different P-constructor
=P x =new PQ { ... }; //assignment

* To specify an anonymous class (call it A) that implements
interface 1
new 1Q { ... }; //create instance of A
=ly=new IQ { ... }; //assignment

* Anonymous class can override methods of superclass P or
implement interface methods of 1

« All other methods and fields are effectively private
= Because there is no way to invoke them from outside!

Enhanced for-loop (foreach)

* As of Java 5, a for-loop works with

= Any array type
= Anything that implements the 1terable interface

Iterator version

¥

boolean linearSearch(lterator a, Object v) {

while (a.-hasNext())
{ if (a.next().equals(v)) return true; }
return false;

Iterable version

b3

boolean linearSearch(lterable b, Object v) {

for (Object x : b)
{ if (x.equals(v)) return true; }
return false;

Conclusions

e I'terator interface allows one to write generic code

= Works on data collections without regard to type of elements or
data structure

e Inner classes are the best way to write an Iterator

*The foreach construct (i.e., enhanced for-loop)
makes for more compact code, but
= Cannot use if need access to array indices, for instance
= Cannot use if need to use remove-operation of Iterator

