
Iteration &
Inner Classes

Lecture 14
CS211 – Spring 2007

2

Announcements

Prelim tonight!

3

boolean linearSearch(Comparable[] a, Object v) {
for (int i = 0; i < a.length; i++) {

if (a[i].compareTo(v) == 0) return true;
}
return false;

}

Recall: Linear Search

Relies on data being stored in a 1D array
Will not work if data is stored in another data structure such as a 2D
array, list, stack, queue, ...

All linear search really needs is:
Are there more elements to look at?
If so, get me the next element

4

Goal: Generic Linear Search

Data is contained in some object
Object has an adapter that permits data to be enumerated in
some order
Adapter has two buttons

boolean hasNext(): are there more elements?
Object next(): if so, give me a new element that has not been
enumerated so far

4 22
234 -9

4-922 Linear search

5

Linear Search

First version:
Input was int[], used == to compare elements

More generic version:
Input was Comparable[], used compareTo()

Is there a still more generic version that is
independent of the data structure?

For example, works even with Comparable[][]

In other words, how should we iterate?
Goal: perform some action on each item in a collection

6

Strategy I: Copy to an Array

Copy the entire collection into
an array

Then iterate over the array

Good
Straightforward to implement

Bad
Can involve a lot of copying

A lazy method might be better

Alternate version: Provide an
array-like interface

numItems()
getItem(int i)

Bad
It can be expensive to
determine the ith item
It doesn’t always make sense
to refer to the ith item in a
collection

7

Strategy II: Iteration-State as Part of Collection

The collection itself keeps
track of iteration

Implies need for methods
equivalent to

void resetIteration()
boolean hasNext()
Object getNext()

Bad
Just one iteration active at a
time
Makes it hard to share the
collection

8

Sharks and Remoras

Data class is like shark
Iterator implementation
is like a remora

A single shark must allow many remoras to hook to it

9

Strategy III: Iterator as a Separate Object

Create an Iterator object
It maintains the state of the
iteration

Java provides an interface
(java.util.Iterator) for
this purpose

Good
Can have multiple iterator
objects associated with one
collection
Standard interface for all
iterations

Bad
The iterator object has to know
a lot about the internal
structure of the collection

We’ll see how to use inner
classes to fix this

Remora teeth

10

Iterator Interface

java.util.Iterator
Linear search can be written
once and for all using Iterator
interface

Any data structure that wants
to support iteration should
provide an implementation of
Iterator

We look at three ways to
implement Iterator

Using a separate class
Using an inner class
Using an anonymous inner class

interface Iterator {
public boolean hasNext();
public Object next();
//Optional
public void remove();

}

11

Enumeration Interface

You may see some code that uses the Enumeration interface
instead of the Iterator interface

Enumeration was part of the earliest versions of Java
Similar functionality to Iterator (no remove method)
Iterator is preferred

interface Enumeration {
boolean hasMoreElements();
Object nextElement();

}

12

Iterable Interface

Java also provides a standard interface
(java.lang.Iterable) for anything that can be
iterated

An object that implements Iterable can be used in
an enhanced for-loop (later in lecture)

interface Iterable {
public Iterator iterator();

}

13

Generic Linear Search
Array version

Iterator version

boolean linearSearch (Object[] a, Object v) {
for (int i = 0; i < a.length; i++) {

if (a[i].equals(v)) return true;
}
return false;

}

boolean linearSearch (Iterator it, Object v) {
while (it.hasNext()) {

if (it.next().equals(v)) return true;
}
return false;

}

14

How Do We Create an Iterator?

Iterator is a Java interface, so we must create a
class that implements Iterator

To create an Iterator for class X, we can
Use a separate class
Use an inner class within X
Use an anonymous inner class within X

15

An Array Iterator (Version 1)

class ArrayIterator implements Iterator {
private Object[] data;
private int index = 0; //index of next element

public ArrayIterator (Object[] a) {
data = a;

}
public boolean hasNext() {

return (index < data.length);
}
public Object next() {

if (this.hasNext()) return data[index++];
else throw new NoSuchElementException();

}
public void remove() {

throw new UnsupportedOperationException();
}

}
16

Using the Array Iterator

String[] a = {"Hello", "world"};

//Printing
Iterator iter = new ArrayIterator(a);
while (iter.hasNext()) {

System.out.println(iter.next());
}

//Searching
iter = new ArrayIterator(a);
if linearSearch(iter,"world") {

System.out.println("found!");
}

17

Iterator Features

Can create as many iterators as needed
Multiple iterators over same data set are fine (as long as the
data set isn’t changed during iteration)

Works for most data structures
Example: 2D arrays

Can keep two cursors, one for row, one for column
Standard orders of enumeration

Row-major
Column-major

18

class Array2DIterator implements Iterator {
private Object[][] data;
private int rowIndex = 0, colIndex = 0;

public Array2DIterator(Object[][] a) { data = a; }

public boolean hasNext() {
while (rowIndex < data.length &&

colIndex >= data[rowIndex].length) {
rowIndex++; colIndex = 0; //if end of row

}
return (rowIndex < data.length &&

colIndex < data[rowIndex].length);
}
public Object next() {

if (hasNext()) return data[rowIndex][colIndex++];
else throw new NoSuchElementException();

}
public void remove() {

throw new UnsupportedOperationException();
}

}

19

Code for Sharks and Remoras
class Shark implements Iterable {

public Object[] data;
public Shark (Object[] a) { data = a; }
public Iterator iterator() { return new Remora(this); }

}
class Remora implements Iterator {

private int index = 0;
private Shark shark;
public Remora(Shark s) { shark = s; }
public boolean hasNext() {

return (index < shark.data.length);
}
public Object next() {

if (hasNext()) return shark.data[index++];
else throw new NoSuchElementException();

}
public void remove () {

throw new UnsupportedOperationException();
}

} 20

Shark

shark = s
index = 0

Remora

shark = s
index = 0

Remora

shark = s
index = 0

Remora

Client Code
String[] a = {"Hello", "world"};
Shark s = new Shark(a); //object containing data
boolean b = linearSearch(s.iterator(), "Hello");
boolean c = linearSearch(s.iterator(), "world");
boolean d = linearSearch(s.iterator(), "Bye");

21

Critique: Iterator as Separate Class

Good
Shark class focuses on data
Remora class focuses on iteration

Bad
Remora code relies on being able to access Shark variables
such as data array

What if data were declared private?
Remora is specialized to Shark, but code appears outside
Shark class

We may change Shark class and forget to update Remora
Clients can create Remoras without invoking iterator()
method of Shark

Better to have language construct to enforce convention

22

Better: Iterator as an Inner Class

Inner class: Java allows you declare a class within
another class
Inner classes can occur at many levels within another
class

Member level
Inner class defined as if it were another field or method

Statement level
Inner class defined as if it were a statement in a method

Expression level
Inner class defined as it were part of an expression
Such expression-level classes are called anonymous classes

Initially, we focus on member-level inner classes

23

Example
of an
Inner
Class

class Shark implements Iterable {
private Object[] data;
public Shark(Object[] a) { data = a; }
public Iterator iterator() {return new Remora();}
private class Remora implements Iterator {

private int index = 0;
public boolean hasNext() {

return (index < data.length);
}
public Object next() {

if (hasNext()) return data[index++];
else throw new NoSuchElementException();

}
public void remove() {

throw new UnsupportedOperationException();
}

}
}

String[] a = {"Hello", "world"};
Shark s = new Shark(a);
boolean b = linearSearch(s.iterator(), "Hello");

Client
Code

24

Observations
Inner class can be declared public, private, “package”, or
protected

Inner class name is visible accordingly
Instances of an inner class have access to all members of
containing outer-class instance

Even members declared private

Some inner-class syntax is weird
Inner classes that are public can be instantiated by
outerObjectInstance.new InnerClass()

E.g., Shark.new Remora()
Note that new Shark.Remora() does not work
If you find yourself needing this syntax, you are probably using a
bad design

25

Inner Classes & this
Keyword this in Remora class refers to Remora object-instance,
not outer Shark object-instance
How do we get a reference to Shark from Remora?

Here’s one way:

Here’s another way: Shark.this refers to the outer Shark object-
instance

class Shark {
private Shark kahuna;
public Shark() { kahuna = this; }

class Remora{ //inner class
...kahuna... //inner class can access variable

}
}

26

Anonymous Classes

To permit programmers to write inner classes
compactly, Java permits programmers to write
anonymous classes

Class does not have a name
Must be instantiated at the point where it is defined

27

Anonymous Class Example
class Shark implements Iterable {

public Object[] data;
public Shark(Object[] a) { data = a; }
public Iterator iterator() {return new Remora();}

class Remora implements Iterator {
private int index = 0;
public boolean hasNext() {

return (index < data.length);
}
public Object next() {

if (hasNext()) return data[index++];
else throw new NoSuchElementException();

}
public void remove() {

throw new UnsupportedOperationException();
}

}
}

()

28

Anonymous Class Example
class Shark implements Iterable {

private Object[] data;
public Shark (Object[] a) { data = a; }
public Iterator iterator () {

return new Iterator () {
private int index = 0;
public boolean hasNext() {

return (index < data.length);
}
public Object next() {

if (hasNext()) return data[index++];
else throw new NoSuchElementException();

}
public void remove () {

throw new UnsupportedOperationException();
}

};
}

}

29

Anonymous Class Properties

An anonymous class is an inner class with the usual
class body, but

No class name
No access specifier (i.e., no public/private/protected)
No constructor
No explicit extends or implements

It either extends one class or implements one interface

new classOrInterfaceName() { ...body... }

30

Anonymous Class Examples
To specify an anonymous class (call it A) that extends class P

new P() { ... }; //create instance of A
new P(42) { ... }; //calls different P-constructor
P x = new P() { ... }; //assignment

To specify an anonymous class (call it A) that implements
interface I

new I() { ... }; //create instance of A
I y = new I() { ... }; //assignment

Anonymous class can override methods of superclass P or
implement interface methods of I

All other methods and fields are effectively private
Because there is no way to invoke them from outside!

31

Enhanced for-loop (foreach)

As of Java 5, a for-loop works with
Any array type
Anything that implements the Iterable interface

Iterator version
boolean linearSearch(Iterator a, Object v) {

while (a.hasNext())
{ if (a.next().equals(v)) return true; }

return false;
}

Iterable version
boolean linearSearch(Iterable b, Object v) {

for (Object x : b)
{ if (x.equals(v)) return true; }

return false;
}

32

Conclusions

Iterator interface allows one to write generic code
Works on data collections without regard to type of elements or
data structure

Inner classes are the best way to write an Iterator

The foreach construct (i.e., enhanced for-loop)
makes for more compact code, but

Cannot use if need access to array indices, for instance
Cannot use if need to use remove-operation of Iterator

