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Announcements

Prelim 1
this Thursday, March 8
7:30pm - 9:00pm
Uris Auditorium
Topics

all material up to (but not 
including) searching and sorting
including interfaces & 
inheritance

DK has extra office hours 
today 11:15-12:15 and 
tomorrow 10-11 

Prelim 1 review sessions
Wednesday 3/7, 7:30-9pm & 9-
10:30pm, Upson B17 (sessions 
are identical)  
See Exams on course website 
for more information
Individual appointments are 
available if you cannot attend 
the review sessions (email one
TA to arrange appointment)

Old exams available for review 
on the course website
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Announcements

TA midterm evaluations will be 
conducted online Monday 
2/26-Friday 3/9
Full participation is 
encouraged
Accessible at 
http://www.engineering.corne
ll.edu/TAEval/survey.cfm

Using consultants
Do not work in consulting room 
after receiving help

Work somewhere else so other 
students can ask questions

Do not use consultants as 
“human compilers”

You are responsible for testing 
your code on your own
Not incrementally with a 
consultant
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Analysis of Merge-Sort

Recurrence:
T(n) = c + d + e + f + 2T(n/2) + gn + h ← recurrence
T(1) = i ← base case

How do we solve this recurrence?

public static Comparable[] mergeSort(Comparable[] A, int low, int high) {
if (low < high) { //at least 2 elements? cost = c

int mid = (low + high)/2; cost = d
Comparable[] A1 = mergeSort(A, low, mid); cost = T(n/2) + e
Comparable[] A2 = mergeSort(A, mid+1, high); cost = T(n/2) + f
return merge(A1,A2); cost = gn + h

} cost = i
....
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Analysis of Merge-Sort

Recurrence:
T(n) = c + d + e + f + 2T(n/2) + gn + h
T(1) = i

First, simplify by dropping lower-order terms

Simplified recurrence:
T(n) = 2T(n/2) + cn
T(1) = d

How do we find the solution?
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Solving Recurrences

Unfortunately, solving recurrences is like solving 
differential equations

No general technique works for all recurrences

Luckily, can get by with a few common patterns

You will learn some more techniques in CS 280
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Proof: strong induction on n
Show that
T(2) ≤ 2c
T(n) ≤ 2T(n/2) + cn

imply
T(n) ≤ cn log n

Basis
T(2) ≤ 2c = c 2 log 2

Induction step
T(n) ≤ 2T(n/2) + cn

≤ 2(cn/2 log n/2) + cn  (IH)
= cn (log n – 1) + cn
= cn log n

Recurrence for MergeSort 

T(n) = 2T(n/2) + cn
T(2) = 2c

Solution is T(n) = O(n log n)

Analysis of Merge-Sort
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Solving Recurrences
Recurrences are important when 
using divide & conquer to design 
an algorithm

Solution techniques:
Can sometimes change variables 
to get a simpler recurrence 
Make a guess, then prove the 
guess correct by induction
Build a recursion tree and use it to 
determine solution
Can use the Master Method

A “cookbook” scheme that 
handles many common 
recurrences

To solve T(n) = aT(n/b) + f(n)
compare f(n) with nlogba

Solution is T(n) = O(f(n))
if f(n) grows more rapidly
Solution is T(n) = O(nlogba)
if nlogba grows more rapidly
Solution is T(n) = O(f(n) log n)
if both grow at same rate

Not an exact statement of the 
theorem – f(n) must be “well-
behaved”
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Recurrence Examples

T(n) = T(n – 1) + 1 → T(n) = O(n) Linear Search

T(n) = T(n – 1) + n → T(n) = O(n2) QuickSort worst-case

T(n) = T(n/2) + 1 → T(n) = O(log n) Binary Search

T(n) = T(n/2) + n → T(n) = O(n)

T(n) = 2 T(n/2) + n → T(n) = O(n log n) MergeSort

T(n) = 2 T(n – 1) → T(n) = O(2n)
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• protons in the known universe ~ 126 digits

• µsec since the big bang ~ 24 digits

- Source: D. Harel, Algorithmics
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a 728-digit 
number of 
centuries

a 185-digit 
number of 
centuries

a 70-digit 
number of 
centuries

3.3 trillion years2.8 hr

a 75-digit 
number of 
centuries

400 trillion 
centuries35.7 yr1 sec1/1000 sec

28.1 days2.8 hr5.2 min3.2 sec1/10 sec
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• The big bang was 15 billion years ago (5·1017 secs)

- Source: D. Harel, Algorithmics

How long would it take @ 1 instruction / µsec ?
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The Fibonacci Function

Mathematical definition:
fib(0) = 0
fib(1) = 1
fib(n) = fib(n − 1) + fib(n − 2),  n ≥ 2

Fibonacci sequence:  0, 1, 1, 2, 3, 5, 8, 13, …

static int fib(int n) {
if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

} 

Fibonacci (Leonardo 
Pisano) 1170−1240?

Statue in Pisa, Italy
Giovanni Paganucci

1863
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Recursive Execution
static int fib(int n) {

if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

} 

fib(4)

fib(3) fib(2)

fib(1) fib(0)

fib(2) fib(1) fib(1) fib(0)

Execution of fib(4):
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The Fibonacci Recurrence
static int fib(int n) {

if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

} 

T(0) = c
T(1) = c
T(n) = T(n – 1) + T(n – 2) + c

Solution is exponential in n
But not quite O(2n)...
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ϕ = (a+b)/b = b/a

ϕ2 = ϕ + 1

ϕ =

= 1.618...

1 + √ 5
2

The Golden Ratio

a

b

ratio of sum of sides 
(a+b) to longer side (b)

=

ratio of longer side (b) to 
shorter side (a)
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Fibonacci Recurrence is O(ϕn)

• want to show T(n)  ≤ cϕn

• have ϕ2 = ϕ + 1

• multiplying by cϕn,    cϕn+2 = cϕn+1 + cϕn

• Basis:
• T(0) = c = cϕ0

• T(1) = c ≤ cϕ1

• Induction step:
• T(n+2) = T(n+1) + T(n)  ≤ cϕn+1 + cϕn =  cϕn+2
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Can We Do Better?

Number of times loop is executed?  Less than n
Number of basic steps per loop?  Constant
Complexity of iterative algorithm = O(n)
Much, much, much, much, much, better than O(ϕn)!

if (n <= 1) return n;
int parent = 0;
int current = 1;
for (int i = 2; i ≤ n; i++) {

int next = current + parent;
parent = current;
current = next;

}
return (current);
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...But We Can Do Even Better!

Let fn denote the nth Fibonacci number
f0 = 0
f1 = 1
fn+2 = fn+1 + fn,  n ≥ 0

Note that                                   , thus

Can compute the nth power of a matrix by repeated squaring in 
O(log n) time

Gives complexity O(log n)

Just a little cleverness got us from exponential to logarithmic!

0    1

1    1

fn
fn+1

fn+1

fn+2
=

0    1

1    1

f0
f1

fn
fn+1

=
n
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Matrix Multiplication in Less Than O(n3)
(Strassen's Algorithm)

Idea: naive 2 x 2 matrix multiplication takes 8 scalar 
multiplications, but we can do it in 7:

where 

s1 = (b - d)(g + h) s5 = a(f - h)
s2 = (a + d)(e + h) s6 = d(g - e)
s3 = (a - c)(e + f) s7 = e(c + d)
s4 = h(a + b)

a    b

c    d
s1 + s2 - s4 + s6 s4 + s5

s6 + s7 s2 - s3 + s5 - s7
=

e    f

g    h
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Now Apply This Recursively –
Divide and Conquer!

Break 2n+1 x 2n+1 matrices up into 4 2n x 2n submatrices
Multiply them the same way

where 

S1 = (B - D)(G + H) S5 = A(F - H)
S2 = (A + D)(E + H) S6 = D(G - E)
S3 = (A - C)(E + F) S7 = E(C + D)
S4 = H(A + B)

A    B

C    D
S1 + S2 - S4 + S6 S4 + S5

S6 + S7 S2 - S3 + S5 - S7
=

E    F

G    H
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Now Apply This Recursively –
Divide and Conquer!

Gives recurrence M(n) = 7 M(n/2) + cn2 for the 
number of multiplications

Solution is M(n) = O(nlog 7) = O(n2.81...)

Number of additions is O(n2), bound separately

22

Is That the Best You Can Do?

How about 3 x 3 for a base case?
best known is 23 multiplications
not good enough to beat Strassen

In 1978, Victor Pan discovered how to multiply 70 x 70 
matrices with 143640 multiplications, giving O(n2.795...)

Best bound to date (obtained by entirely different 
methods) is O(n2.376...)  (Coppersmith & Winograd 1987)

Best know lower bound is still Ω(n2)
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Moral: Complexity Matters!

But you are acquiring the best tools to deal with it!


