
Solving
Recurrences

Lecture 13
CS211 – Spring 2007

2

Announcements

Prelim 1
this Thursday, March 8
7:30pm - 9:00pm
Uris Auditorium
Topics

all material up to (but not
including) searching and sorting
including interfaces &
inheritance

DK has extra office hours
today 11:15-12:15 and
tomorrow 10-11

Prelim 1 review sessions
Wednesday 3/7, 7:30-9pm & 9-
10:30pm, Upson B17 (sessions
are identical)
See Exams on course website
for more information
Individual appointments are
available if you cannot attend
the review sessions (email one
TA to arrange appointment)

Old exams available for review
on the course website

3

Announcements

TA midterm evaluations will be
conducted online Monday
2/26-Friday 3/9
Full participation is
encouraged
Accessible at
http://www.engineering.corne
ll.edu/TAEval/survey.cfm

Using consultants
Do not work in consulting room
after receiving help

Work somewhere else so other
students can ask questions

Do not use consultants as
“human compilers”

You are responsible for testing
your code on your own
Not incrementally with a
consultant

4

Analysis of Merge-Sort

Recurrence:
T(n) = c + d + e + f + 2T(n/2) + gn + h ← recurrence
T(1) = i ← base case

How do we solve this recurrence?

public static Comparable[] mergeSort(Comparable[] A, int low, int high) {
if (low < high) { //at least 2 elements? cost = c

int mid = (low + high)/2; cost = d
Comparable[] A1 = mergeSort(A, low, mid); cost = T(n/2) + e
Comparable[] A2 = mergeSort(A, mid+1, high); cost = T(n/2) + f
return merge(A1,A2); cost = gn + h

} cost = i
....

5

Analysis of Merge-Sort

Recurrence:
T(n) = c + d + e + f + 2T(n/2) + gn + h
T(1) = i

First, simplify by dropping lower-order terms

Simplified recurrence:
T(n) = 2T(n/2) + cn
T(1) = d

How do we find the solution?

6

Solving Recurrences

Unfortunately, solving recurrences is like solving
differential equations

No general technique works for all recurrences

Luckily, can get by with a few common patterns

You will learn some more techniques in CS 280

7

Proof: strong induction on n
Show that
T(2) ≤ 2c
T(n) ≤ 2T(n/2) + cn

imply
T(n) ≤ cn log n

Basis
T(2) ≤ 2c = c 2 log 2

Induction step
T(n) ≤ 2T(n/2) + cn

≤ 2(cn/2 log n/2) + cn (IH)
= cn (log n – 1) + cn
= cn log n

Recurrence for MergeSort

T(n) = 2T(n/2) + cn
T(2) = 2c

Solution is T(n) = O(n log n)

Analysis of Merge-Sort

8

Solving Recurrences
Recurrences are important when
using divide & conquer to design
an algorithm

Solution techniques:
Can sometimes change variables
to get a simpler recurrence
Make a guess, then prove the
guess correct by induction
Build a recursion tree and use it to
determine solution
Can use the Master Method

A “cookbook” scheme that
handles many common
recurrences

To solve T(n) = aT(n/b) + f(n)
compare f(n) with nlogba

Solution is T(n) = O(f(n))
if f(n) grows more rapidly
Solution is T(n) = O(nlogba)
if nlogba grows more rapidly
Solution is T(n) = O(f(n) log n)
if both grow at same rate

Not an exact statement of the
theorem – f(n) must be “well-
behaved”

9

Recurrence Examples

T(n) = T(n – 1) + 1 → T(n) = O(n) Linear Search

T(n) = T(n – 1) + n → T(n) = O(n2) QuickSort worst-case

T(n) = T(n/2) + 1 → T(n) = O(log n) Binary Search

T(n) = T(n/2) + n → T(n) = O(n)

T(n) = 2 T(n/2) + n → T(n) = O(n log n) MergeSort

T(n) = 2 T(n – 1) → T(n) = O(2n)

10

1 billion27 million1,000,000125,0001000

a 302-digit
numbera 91-digit numbera 31-digit

number
a 16-digit
number1024

unimaginably
largea 623-digit numbera 161-digit

number
a 65-digit
number3.6 million

unimaginably
largea 744-digit numbera 201-digit

number
an 85-digit
number10 billion

1,000,00090,00010,0002500100

9966246966528233

5000150050025050

10 50 100 300 1000

n
n

n
!

2
n

n
3

n
2

n
lo

g
n

5
n

• protons in the known universe ~ 126 digits

• µsec since the big bang ~ 24 digits

- Source: D. Harel, Algorithmics

11

a 728-digit
number of
centuries

a 185-digit
number of
centuries

a 70-digit
number of
centuries

3.3 trillion years2.8 hr

a 75-digit
number of
centuries

400 trillion
centuries35.7 yr1 sec1/1000 sec

28.1 days2.8 hr5.2 min3.2 sec1/10 sec

9/100 sec1/100 sec1/400 sec1/2500 sec1/10,000 sec

10 20 50 100 300

n
n

2
n

n
5

n
2

• The big bang was 15 billion years ago (5·1017 secs)

- Source: D. Harel, Algorithmics

How long would it take @ 1 instruction / µsec ?

12

The Fibonacci Function

Mathematical definition:
fib(0) = 0
fib(1) = 1
fib(n) = fib(n − 1) + fib(n − 2), n ≥ 2

Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, …

static int fib(int n) {
if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

}

Fibonacci (Leonardo
Pisano) 1170−1240?

Statue in Pisa, Italy
Giovanni Paganucci

1863

13

Recursive Execution
static int fib(int n) {

if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

}

fib(4)

fib(3) fib(2)

fib(1) fib(0)

fib(2) fib(1) fib(1) fib(0)

Execution of fib(4):

14

The Fibonacci Recurrence
static int fib(int n) {

if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

}

T(0) = c
T(1) = c
T(n) = T(n – 1) + T(n – 2) + c

Solution is exponential in n
But not quite O(2n)...

15

ϕ = (a+b)/b = b/a

ϕ2 = ϕ + 1

ϕ =

= 1.618...

1 + √ 5
2

The Golden Ratio

a

b

ratio of sum of sides
(a+b) to longer side (b)

=

ratio of longer side (b) to
shorter side (a)

16

Fibonacci Recurrence is O(ϕn)

• want to show T(n) ≤ cϕn

• have ϕ2 = ϕ + 1

• multiplying by cϕn, cϕn+2 = cϕn+1 + cϕn

• Basis:
• T(0) = c = cϕ0

• T(1) = c ≤ cϕ1

• Induction step:
• T(n+2) = T(n+1) + T(n) ≤ cϕn+1 + cϕn = cϕn+2

17

Can We Do Better?

Number of times loop is executed? Less than n
Number of basic steps per loop? Constant
Complexity of iterative algorithm = O(n)
Much, much, much, much, much, better than O(ϕn)!

if (n <= 1) return n;
int parent = 0;
int current = 1;
for (int i = 2; i ≤ n; i++) {

int next = current + parent;
parent = current;
current = next;

}
return (current);

18

...But We Can Do Even Better!

Let fn denote the nth Fibonacci number
f0 = 0
f1 = 1
fn+2 = fn+1 + fn, n ≥ 0

Note that , thus

Can compute the nth power of a matrix by repeated squaring in
O(log n) time

Gives complexity O(log n)

Just a little cleverness got us from exponential to logarithmic!

0 1

1 1

fn
fn+1

fn+1

fn+2
=

0 1

1 1

f0
f1

fn
fn+1

=
n

19

Matrix Multiplication in Less Than O(n3)
(Strassen's Algorithm)

Idea: naive 2 x 2 matrix multiplication takes 8 scalar
multiplications, but we can do it in 7:

where

s1 = (b - d)(g + h) s5 = a(f - h)
s2 = (a + d)(e + h) s6 = d(g - e)
s3 = (a - c)(e + f) s7 = e(c + d)
s4 = h(a + b)

a b

c d
s1 + s2 - s4 + s6 s4 + s5

s6 + s7 s2 - s3 + s5 - s7
=

e f

g h

20

Now Apply This Recursively –
Divide and Conquer!

Break 2n+1 x 2n+1 matrices up into 4 2n x 2n submatrices
Multiply them the same way

where

S1 = (B - D)(G + H) S5 = A(F - H)
S2 = (A + D)(E + H) S6 = D(G - E)
S3 = (A - C)(E + F) S7 = E(C + D)
S4 = H(A + B)

A B

C D
S1 + S2 - S4 + S6 S4 + S5

S6 + S7 S2 - S3 + S5 - S7
=

E F

G H

21

Now Apply This Recursively –
Divide and Conquer!

Gives recurrence M(n) = 7 M(n/2) + cn2 for the
number of multiplications

Solution is M(n) = O(nlog 7) = O(n2.81...)

Number of additions is O(n2), bound separately

22

Is That the Best You Can Do?

How about 3 x 3 for a base case?
best known is 23 multiplications
not good enough to beat Strassen

In 1978, Victor Pan discovered how to multiply 70 x 70
matrices with 143640 multiplications, giving O(n2.795...)

Best bound to date (obtained by entirely different
methods) is O(n2.376...) (Coppersmith & Winograd 1987)

Best know lower bound is still Ω(n2)

23

Moral: Complexity Matters!

But you are acquiring the best tools to deal with it!

