Solving
Recurrences

Lecture 13
CS211 — Spring 2007

Announcements

* Prelim 1 * Prelim 1 review sessions
= this Thursday, March 8 = Wednesday 3/7, 7:30-9pm & 9-
7:30pm - 9:00pm 10:30pm, Upson B17 (sessions
= Uris Auditorium are identical)
= Topics = See Exams on course website
« all material up to (but not for more information
including) searching and sorting = Individual appointments are
« including interfaces & available if you cannot attend
inheritance the review sessions (email one

TA to arrange appointment)
* DK has extra office hours
today 11:15-12:15 and * Old exams available for review
tomorrow 10-11 on the course website

Announcements

* TA midterm evaluations will be ¢ Using consultants

conducted online Monday = Do not work in consulting room
2/26-Friday 3/9 after receiving help
« Full participation is + Work somewhere else so other

encouraged students can ask questions
<A ible at = Do not use consultants as
ccessible at . “human compilers”
http://www.engineering.corne

11.edu/TAEval/survey.cfm + You are responsible for testing
. Y.

your code on your own
+ Not incrementally with a
consultant

Analysis of Merge-Sort

public static C 3] (c le[] A, int low, int high) {
if (low < high) { //at least 2 elements? cost = c
int mid = (low + high)/2; cost = d
Comparable[] Al = mergeSort(A, low, mid); cost = T(n/2) + e
Comparable[] A2 = mergeSort(A, mid+l, high); cost = T(n/2) + £
return merge (Al,A2); cost = gn + h
} cost = i
Recurrence:
T(n)=c+d+e+f+2T(n/2) +gn+h <« recurrence
T@) =i <« base case

How do we solve this recurrence?

Analysis of Merge-Sort

Recurrence:
T(n)=c+d+e+f+2T(n/2)+gn+h
TQ) =i

First, simplify by dropping lower-order terms

Simplified recurrence:
T(n) =2T(n/2) + cn
T1)=d

How do we find the solution?

Solving Recurrences

* Unfortunately, solving recurrences is like solving
differential equations
= No general technique works for all recurrences

e Luckily, can get by with a few common patterns

* You will learn some more techniques in CS 280




Analysis

* Recurrence for MergeSort

= T(n) =2T(n/2) + cn

= T(2)=2c

= Solution is T(n) = O(n log n)

of Merge-Sort

* Proof: strong induction on n
* Show that

T(2) <2¢c

T(n) < 2T(n/2) + cn

imply

T(n)<cnlogn

* Basis
T(2)<2c=c2log 2

* Induction step
T(n) <2T(n/2) +cn
<2(cn/2 log n/2) + cn (IH)
=cn(logn-1)+cn

Solving Recurrences

* Recurrences are important when To solve
using divide & conquer to design compare with
an algorithm

« Solution techniques: Solution is T(n) = O(f(n))

= Can sometimes change variables if f(n) grows more rapidly
to get a simpler recurrence o _ Jog,a

= Make a guess, then prove the ° _Sol‘utlon 1S T(n) - O(n _“ )
guess correct by induction if n'°%:2 grows more rapidly

= Build a recursion tree and use it to
determine solution
= Can use the Master Method
+ A “cookbook” scheme that
handles many common

Solution is T(n) = O(f(n) log n)
if both grow at same rate

Not an exact statement of the

=cnlogn
4
Recurrence Examples
e T(n)=T(h-1)+1 - T(n) = O(n) Linear Search
e T(N)=T(h-1)+n - T(n) = O(n?) QuickSort worst-case
e T(n)=T(n/2) + 1 - T(n) = O(log n) Binary Search
« T(N)=T(M/2) +n - T(n)=0(n)
* T(n)=2T(n/2) +n — T(n) =O(nlog n) MergeSort
e T(N)=2T(n-1) - T(n) = O(2")
9

recurrences B
theorem — f(n) must be “well-
behaved”

8
10 50 100 300 1000
S 50 250 500 1500 5000
c
to» 33 282 665 2469 9966
<
¢ 100 2500 10,000 90,000 1,000,000
T 1000 125,000 1,000,000 27 million 1 billion
c a 16-digit a 31-digit A a 302-digit
N 2028 number number 2ol oiinbes number
=| 36 mion a 65-digit a16ldigit |, 623-digit number unimaginably
number number large
< 10 billion an 85-digit a 201-digit a 744-digit number unimaginably
number number large

« protons in the known universe ~ 126 digits
 usec since the big bang ~ 24 digits

- Source: D. Harel, Algorithmics 0

How long would it take @ 1 instruction / usec ?

10 20 50 100 300
| 120,000 sec 1/2500 sec 1/400 sec 1/100 sec 9/100 sec
T 1/10 sec 3.2sec 5.2 min 2.8 hr 28.1days

N a 75-digit
< 400 trillion
N 1/1000 sec 1sec 35.7 yr S numbgr of
centuries
. a 70-digit a 185-digit a 728-digit
[ 2.8 hr 3.3 trillion years number of number of number of
centuries centuries centuries

« The big bang was 15 billion years ago (5-1017 secs)

- Source: D. Harel, Algorithmics

The Fibonacci Function

* Mathematical definition:
fib(0) =0
fib(1) =1
fib(n) = fib(n — 1) + fib(n — 2), n>2

* Fibonacci sequence: 0,1, 1, 2,3,5,8,13, ...

static int fib(int n) { Fibonacci (Leonardo
if (n == 0) return O0; Pisano) 1170-1240?
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2); Statue in Pisa, Italy
} Giovanni Paganucci
1863




Recursive Execution

static int fib(int n) {
if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

}

Execution of fib(4): fib(4)

fib(3) fib(2)
A /\
fib) fib(1) fib@) fib(0)

N

fib(l)  fib(0)

The Fibonacci Recurrence

static int fib(int n) {
if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

T0)=c
T(1)=c
TN)=T(h—-1)+T(n-2)+c

* Solution is exponential in n
* But not quite O(2")...

The Golden Ratio

¢ = (atb)/b = b/a
g?=g+1
_1+45
0=z
ratio of sum of sides
(a+b) to longer side (b) -1.618..

al =

ratio of longer side (b) to
shorter side (a)

Fibonacci Recurrence is O(p")

*want to show T(n) < co"
chave p?=¢ +1

« multiplying by ce", ce™?2 = ce™! + co"

* Basis:
*T(0)=c=coe°
*T(1)=c<co!
« Induction step:
e T(n+2) =T(n+1) + T(n) < ce™! +co" = ce™?

Can We Do Better?

if (n <= 1) return n;

int parent = 0;

int current = 1;

for (int i = 2; i £ n; i++) {
int next = current + parent;
parent = current;
current = next;

}

return (current);

* Number of times loop is executed?

* Number of basic steps per loop?

» Complexity of iterative algorithm = O(n)

* Much, much, much, much, much, better than O(p")!

...But We Can Do Even Better!

* Let f, denote the n' Fibonacci number
"f=0
sf=1
®faz=fog +f n20

i

o 1)(f, (A n
-Notethat[ ]" TR At I K B
1 1|fe frov 1 1) |f fne
* Can compute the nth power of a matrix by repeated squaring in
O(log n) time
* Gives complexity O(log n)

« Just a little cleverness got us from exponential to logarithmic!




Matrix Multiplication in Less Than O(n3)
(Strassen's Algorithm)

* |dea: naive 2 x 2 matrix multiplication takes 8 scalar
multiplications, but we can do it in 7:

a blfe f]  [s;+s,-5,+54 S+ Sg
c dJlg h) Se +S7 S2-S3*S5-S7

where

s;=(b-d)(@+h) ss=a(f - h)
s,=(a+d)(e+h) sg=d(g-e)
s;=(a-c)e+f) s, =e(c+d)
s, =h(a+b)

Now Apply This Recursively —
Divide and Conquer!

¢ Break 21 x 2"1 matrices up into 4 2" x 2" submatrices
¢ Multiply them the same way

A B|[E F| _ [s;+S,-S,+Sg S,+Sg
c oe H Se+S7 Sp-S3+S5-S;

where

S, =(B-D)(G +H) S;=A(F-H)
S, =(A+D)(E +H) S =D(G - E)
S;=(A-C)E+F) S, =E(C +D)
S, =H(A +B)

Now Apply This Recursively —
Divide and Conquer!

* Gives recurrence M(n) = 7 M(n/2) + cn? for the
number of multiplications

* Solution is M(n) = O(n'°97) = O(n281--)

Is That the Best You Can Do?

* How about 3 x 3 for a base case?
= best known is 23 multiplications
= not good enough to beat Strassen

* In 1978, Victor Pan discovered how to multiply 70 x 70
matrices with 143640 multiplications, giving O(n2-795--)

* Best bound to date (obtained by entirely different
methods) is O(n2376-) (Coppersmith & Winograd 1987)

¢ Best know lower bound is still Q(n?)

Moral: Complexity Matters!

* But you are acquiring the best tools to deal with it!




