

Announcements

- Prelim 1
 - this Thursday, March 8 7:30pm - 9:00pm
 - Uris Auditorium
- Topics
 - all material up to (but not including) searching and sorting
 - including interfaces & inheritance
- DK has extra office hours today 11:15-12:15 and tomorrow 10-11
- Prelim 1 review sessions
- Wednesday 3/7, 7:30-9pm & 9-10:30pm, Upson B17 (sessions are identical)
- See Exams on course website for more information
- Individual appointments are available if you cannot attend the review sessions (email *one* TA to arrange appointment)
- Old exams available for review on the course website

2

Announcements

- TA midterm evaluations will be conducted online Monday Using consultants Do not work in co 2/26-Friday 3/9
- Full participation is encouraged
- Accessible at
- http://www.engineering.corne 11.edu/TAEval/survey.cfm
- - Do not work in consulting room after receiving help
 - Work somewhere else so other students can ask questions
 - Do not use consultants as "human compilers"
 - · You are responsible for testing your code on your ov
 - · Not incrementally with a consultant

Analysis of Merge-Sort

```
cost = c

cost = d

cost = T(n/2) + e

cost = T(n/2) + f

cost = gn + h

cost = i
```

Recurrence:

```
T(n) = c + d + e + f + 2T(n/2) + gn + h \leftarrow recurrence
                                          ← base case
```

How do we solve this recurrence?

Analysis of Merge-Sort

Recurrence:

```
T(n) = c + d + e + f + 2T(n/2) + gn + h
T(1) = i
```

First, simplify by dropping lower-order terms

Simplified recurrence:

$$T(n) = 2T(n/2) + cn$$

T(1) = d

How do we find the solution?

Solving Recurrences

- Unfortunately, solving recurrences is like solving differential equations
 - No general technique works for all recurrences
- Luckily, can get by with a few common patterns
- You will learn some more techniques in CS 280

Analysis of Merge-Sort

- Recurrence for MergeSort
- T(n) = 2T(n/2) + cn■ T(2) = 2c
- Solution is T(n) = O(n log n)
- Proof: strong induction on n
- Show that $T(2) \le 2c$

 $T(n) \leq 2T(n/2) + cn$

imply $T(n) \le cn \log n$

• Basis

 $T(2) \le 2c = c \ 2 \log 2$

• Induction step

 $T(n) \, \leq 2T(n/2) + cn$ $\leq 2 (\text{cn/2 log n/2}) + \text{cn (IH)}$ = cn (log n - 1) + cn

= cn log n

Solving Recurrences

- Recurrences are important when using divide & conquer to design an algorithm
- Solution techniques:
- Can sometimes change variables to get a simpler recurrence
 Make a guess, then prove the guess correct by induction
- Build a recursion tree and use it to determine solution
- Can use the Master Method
- A "cookbook" scheme that handles many common recurrences

To solve T(n) = aT(n/b) + f(n)compare f(n) with nlog, a

- Solution is T(n) = O(f(n)) if f(n) grows more rapidly
- Solution is $T(n) = O(n^{log_b a})$ if nlog,a grows more rapidly
- Solution is $T(n) = O(f(n) \log n)$ if both grow at same rate
- . Not an exact statement of the theorem - f(n) must be "wellbehaved"

Recurrence Examples

- T(n) = T(n-1) + 1T(n) = O(n)Linear Search
- T(n) = T(n-1) + n $\mathsf{T}(\mathsf{n}) = \mathsf{O}(\mathsf{n}^2)$ QuickSort worst-case
- T(n) = T(n/2) + 1 $T(n) = O(\log n)$ Binary Search
- T(n) = T(n/2) + nT(n) = O(n)
- T(n) = 2 T(n/2) + n $T(n) = O(n \log n)$ MergeSort
- T(n) = 2 T(n 1) $T(n) = O(2^n)$

9	

11

	10	50	100	300	1000
5n	50	250	500	1500	5000
nlogn	33	282	665	2469	9966
n²	100	2500	10,000	90,000	1,000,000
n ₃	1000	125,000	1,000,000	27 million	1 billion
2	1024	a 16-digit number	a 31-digit number	a 91-digit number	a 302-digit number
Ē	3.6 million	a 65-digit number	a 161-digit number	a 623-digit number	unimaginably large
'n	10 billion	an 85-digit number	a 201-digit number	a 744-digit number	unimaginably large

- protons in the known universe ~ 126 digits
- μsec since the big bang ~ 24 digits
 - Source: D. Harel, Algorithmics

How long would it take @ 1 instruction / μsec ?

	10	20	50	100	300
2	1/10,000 sec	1/2500 sec	1/400 sec	1/100 sec	9/100 sec
n ₅	1/10 sec	3.2 sec	5.2 min	2.8 hr	28.1 days
2	1/1000 sec	1 sec	35.7 yr	400 trillion centuries	a 75-digit number of centuries
Ē	2.8 hr	3.3 trillion years	a 70-digit number of centuries	a 185-digit number of centuries	a 728-digit number of centuries

 \bullet The big bang was 15 billion years ago (5·10 17 secs)

- Source: D. Harel, Algorithmics

if (n == 0) return 0;
else if (n == 1) return 1; else return fib(n-1) + fib(n-2);

static int fib(int n) {

The Fibonacci Function

 Mathematical definition: fib(0) = 0

 $fib(n) = fib(n-1) + fib(n-2), n \ge 2$

• Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, ...

Fibonacci (Leonardo Pisano) 1170–1240?

Statue in Pisa, Italy Giovanni Paganucci 1863

12

Recursive Execution static int fib(int n) { if (n == 0) return 0; else if (n == 1) return 1; else return fib(n-1) + fib(n-2); Execution of fib(4): fib(4) fib(3) fib(2) fib(2) fib(1) fib(0) fib(1) fib(1) fib(0)13

The Fibonacci Recurrence

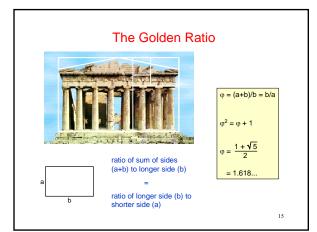
```
static int fib(int n) {
   if (n == 0) return 0;
else if (n == 1) return 1;
   else return fib(n-1) + fib(n-2);
```

$$T(0) = c$$

 $T(1) = c$
 $T(n) = T(n-1) + T(n-2) + c$

- · Solution is exponential in n
- But not quite O(2ⁿ)...

14



Fibonacci Recurrence is O(φⁿ)

- want to show $T(n) \le c_0^n$
- have $\varphi^2 = \varphi + 1$
- multiplying by $c\phi^n$, $c\phi^{n+2} = c\phi^{n+1} + c\phi^n$
- Basis:
 - $T(0) = c = c\phi^0$
 - $T(1) = c \le c\phi^1$
- Induction step:
 - $T(n+2) = T(n+1) + T(n) \le c\phi^{n+1} + c\phi^n = c\phi^{n+2}$

16

Can We Do Better?

```
if (n <= 1) return n;
int parent = 0;
int current = 1;
for (int i = 2; i \le n; i++) {
   int next = current + parent;
parent = current;
    current = next;
return (current);
```

- Number of times loop is executed? Less than n
- Number of basic steps per loop? Constant
- Complexity of iterative algorithm = O(n)
- Much, much, much, much, better than $O(\varphi^n)!$

...But We Can Do Even Better!

- ullet Let f_n denote the n^{th} Fibonacci number

 - $f_0 = 0$ $f_1 = 1$ $f_{n+2} = f_{n+1} + f_n, n ≥ 0$
- $\bullet \text{ Note that } \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \!\! \begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix} = \begin{pmatrix} f_{n+1} \\ f_{n+2} \end{pmatrix}, \text{ thus } \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \!\! \begin{pmatrix} f_0 \\ f_1 \end{pmatrix} = \begin{pmatrix} f_n \\ f_{n+1} \end{pmatrix}$
- \bullet Can compute the nth power of a matrix by repeated squaring in $O(\log\,n)$ time
- Gives complexity O(log n)
- Just a little cleverness got us from exponential to logarithmic!

18

Matrix Multiplication in Less Than O(n³) (Strassen's Algorithm)

• Idea: naive 2 x 2 matrix multiplication takes 8 scalar multiplications, but we can do it in 7:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e & f \\ g & h \end{pmatrix} = \begin{pmatrix} s_1 + s_2 - s_4 + s_6 & s_4 + s_5 \\ s_6 + s_7 & s_2 - s_3 + s_5 - s_7 \end{pmatrix}$$

where

$$\begin{array}{lll} s_1 = (b - d)(g + h) & s_5 = a(f - h) \\ s_2 = (a + d)(e + h) & s_6 = d(g - e) \\ s_3 = (a - c)(e + f) & s_7 = e(c + d) \\ s_4 = h(a + b) & \end{array}$$

19

Now Apply This Recursively -Divide and Conquer!

- Break 2ⁿ⁺¹ x 2ⁿ⁺¹ matrices up into 4 2ⁿ x 2ⁿ submatrices
 Multiply them the same way

$$\begin{pmatrix} \mathsf{A} & \mathsf{B} \\ \mathsf{C} & \mathsf{D} \end{pmatrix} \begin{pmatrix} \mathsf{E} & \mathsf{F} \\ \mathsf{G} & \mathsf{H} \end{pmatrix} \quad = \quad \begin{pmatrix} \mathsf{S}_1 + \mathsf{S}_2 \cdot \mathsf{S}_4 + \mathsf{S}_6 & \mathsf{S}_4 + \mathsf{S}_5 \\ \mathsf{S}_6 + \mathsf{S}_7 & \mathsf{S}_2 \cdot \mathsf{S}_3 + \mathsf{S}_5 \cdot \mathsf{S}_7 \end{pmatrix}$$

where

$$\begin{array}{lll} S_1 = (B-D)(G+H) & S_5 = A(F-H) \\ S_2 = (A+D)(E+H) & S_6 = D(G-E) \\ S_3 = (A-C)(E+F) & S_7 = E(C+D) \\ S_4 = H(A+B) & \end{array}$$

20

Now Apply This Recursively -Divide and Conquer!

- Gives recurrence $M(n) = 7 M(n/2) + cn^2$ for the number of multiplications
- Solution is $M(n) = O(n^{\log 7}) = O(n^{2.81...})$
- Number of additions is O(n2), bound separately

21

Is That the Best You Can Do?

- How about 3 x 3 for a base case?
 - best known is 23 multiplications
 - not good enough to beat Strassen
- In 1978, Victor Pan discovered how to multiply 70 x 70 matrices with 143640 multiplications, giving O(n^{2.795...})
- Best bound to date (obtained by entirely different methods) is O(n^{2.376...}) (Coppersmith & Winograd 1987)
- Best know lower bound is still $\Omega(n^2)$

22

Moral: Complexity Matters!

• But you are acquiring the best tools to deal with it!

23