Sorting

Lecture 12
CS211 — Spring 2007

InsertionSort

//sort a[], an array of int
for (int i = 1; i < a.length; i++) {
int temp = a[i];
int k;
for (k = i; 0 < k & temp < a[k-1]; k—)
a[k] = a[k-1];

a[k] = temp;
3

* Many people sort cards this way « Worst-case is O(n?)
« Invariant: everything to left of i is = Consider reverse-sorted input

already sorted  Best-case is O(n)
* Works especially well when input = Consider sorted input

is nearly sorted « Expected case is O(n?)

= Expected number of inversions is
n(n-1)/4

SelectionSort
« To sort an array of size n: * This is the other common way for

= Examine a[0] to a[n-1]; find people to sort cards

the smallest one and swap it with

a[o] Runti

.

= Examine a[1] to a[n—1]; find untime 5

the smallest one and swap it with = Worst-case O(n)

a[1] = Best-case O(n?)
= In general, in step i, examine = Expected-case O(n?)

a[i] to a[n—1]; find the
smallest one and swap it with

a[i]

Divide & Conquer?

* |t often pays to
= Break the problem into smaller subproblems,
= Solve the subproblems separately, and then
= Assemble a final solution

e This technique is called divide-and-conquer
= Caveat: It won't help unless the partitioning and assembly
processes are inexpensive

* Can we apply this approach to sorting?

MergeSort

* Quintessential divide-and-conquer algorithm
« Divide array into equal parts, sort each part, then merge
* Questions:

= Q1: How do we divide array into two equal parts?
= Al: Find middle index: a. length/2

= Q2: How do we sort the parts?
= A2: call MergeSort recursively!

= Q3: How do we merge the sorted subarrays?
= A3: We have to write some (easy) code

Merging Sorted Arrays A and B

* Create an array C of size = size of A + size of B
* Keep three indices:
= iintoA
= jintoB
= kinto C
« Initialize all three indices to O (start of each array)
* Compare element A[i] with B[j], and move the smaller
element into C[k]
* Increment i or j, whichever one we took, and k
* When either A or B becomes empty, copy remaining elements
from the other array (B or A, respectively) into C




Merging Sorted Arrays

C = merged array

MergeSort Analysis

* Outline (detailed code on the
website)
= Split array into two halves
= Recursively sort each half
= Merge the two halves

* Merge = combine two sorted
arrays to make a single sorted
array

= Rule: always choose the
smallest item

= Time: O(n) where n is the
combined size of the two
arrays

* Runtime recurrence
= Let T(n) be the time to sort an
array of size n
T(n) = 2T(n/2) + O(n)
T =1

* Can show by induction that
T(n) is O(n log n)

* Alternately, can see that
T(n) is O(n log n) by looking at
tree of recursive calls

MergeSort Notes

e Asymptotic complexity: O(n log n)
= Much faster than O(n?)
* Disadvantage
= Need extra storage for temporary arrays

= In practice, this can be a disadvantage, even though
MergeSort is asymptotically optimal for sorting

= Can do MergeSort in place, but this is very tricky (and it
slows down the algorithm significantly)
* Are there good sorting algorithms that do not use so
much extra storage?
= Yes: QuickSort

QuickSort

* Intuitive idea

= Given an array A to sort, choose a pivot value p

= Partition A into two subarrays, AX and AY
+ AX contains only elements < p
+ AY contains only elements > p

= Sort subarrays AX and AY separately

= Concatenate (not merge!) sorted AX and AY to get sorted A
+ Concatenation is easier than merging — O(1)

‘ 20‘ 31‘24‘ 19‘ 45‘ 56‘ 4 ‘65‘ 5 ‘ 72‘ 14‘ 99‘
<

pivot Atim‘

l QuickSort

20 ‘24‘ 31‘ 45‘56‘65‘72‘99‘

concatenate /

‘4‘5 ‘14‘19‘20‘24‘31‘45‘56‘65‘72‘99‘

QuickSort Questions

* Key problems
= How should we choose a pivot?
= How do we partition an array in
place?

* Partitioning in place
= Can be done in O(n) time (next
slide)

* Choosing a pivot
= |deal pivot is the median, since
this splits array in half
= Computing the median of an
unsorted array is O(n), but
algorithm is quite complicated
= Popular heuristics:
+ Use first value in array (usually
not a good choice)
+ Use middle value in array
+ Use median of first, last, and
middle values in array
+ Choose a random element




In-Place Partitioning

How can we move all the blues to the left of all the reds?

1. Keep two indices, LEFT and RIGHT
2. Initialize LEFT at start of array and RIGHT at end of array
3. Invariant: all elements to left of LEFT are blue
all elements to right of RIGHT are red
4. Keep advancing indices until they pass, maintaining invariant

[w[=]u]u]m[u]a]a]u]n]a]
7Y

(w[m[a[a]a]a]a]a]a]a]n]
.

H >0 > H

(=|=[a[n]a]=|n]a]a]a]n]
% x

(m|u[m[n/a]aja]n|e]n|a]s]
% ¥

Now neither LEFT nor RIGHT can advance and maintain invariant.
We can swap red and blue pointed to by LEFT and RIGHT indices. swap
After swap, indices can continue to advance until next conflict.

(=|ufm|a]a][=|a]a|a]a]=]a]
% 7

[w|u[w[n/a]nju]nju]aja]n]
¥ ¥ swap
[w|u[w[u/m[nju]nje]a|a]n]
¥ ¥
[m|u[m[n/a]aju]aje]a|a]s]
¥ ¥ swa

(=|u[m|n|a]=|a]a|a]a]=]a]
D 7

[w][m[w]u|u]u]a[a[s|a]u]a]
¥ ¥

|=|m[n[n]a][=|a]a]a]a]=]x]
LI

* Once indices cross, partitioning is done

* If you replace blue with < p and red with > p, this is
exactly what we need for QuickSort partitioning

* Notice that after partitioning, array is partially sorted

* Recursive calls on partitioned subarrays will sort
subarrays

* No need to copy/move arrays, since we partitioned in
place

QuickSort Analysis

* Runtime analysis (worst-case)
= Partition can work badly, producing this: [p] > p |
= Runtime recurrence
¢+ T(n)=T(n-1) +n
= This can be solved to show worst-case T(n) is O(n?)
* Runtime analysis (expected-case)
= More complex recurrence
= Can solve to show expected T(n) is O(n log n)
* Improve constant factor by avoiding QuickSort on small sets
= Switch to InsertionSort (for example) for sets of size, say, <9
= Definition of small depends on language, machine, etc.

Sorting Algorithm Summary

* The ones we have discussed * Why so many? Do computer

= InsertionSort scientists have some kind of

= SelectionSort sorting fetish or what?

= MergeSort = Stable sorts: Ins, Sel, Mer

= QuickSort = Worst-case O(n log n): Mer,
Hea

= Expected O(n log n):
Mer, Hea, Qui

= Best for nearly-sorted sets:

« Other sorting algorithms
= HeapSort (will revisit this)
= ShellSort (in text) Ins
* BubbleSort (nice name) = No extra space needed: Ins,
= RadixSort Sel, Hea
= BinSort = Fastest in practice: Qui
= CountingSort = Least data movement: Sel

Lower Bound for Comparison Sorting

* Goal: Determine the minimum But how can we prove

time required to sort n items anything about the best
« Note: we want worst-case, not ~ Possible algorithm?
best-case time = We want to find characteristics
= Best-case doesn't tell us much; that are common to all sorting
for example, we know Insertion algorithms
Sort takes O(n) time on = Let's limit attention to
already-sorted input comparison-based algorithms
= Want to know the worst-case and try to count number of
time for the best possible comparisons
algorithm




Comparison Trees

Comparison-based algorithms

make decisions based on

comparison of data elements

This gives a comparison tree

If the algorithm fails to a[i] < alil
terminate for some input, then no yes
the comparison tree is infinite

The height of the comparison

tree represents the worst-case

number of comparisons for that

algorithm

Lower Bound for Comparison Sorting

* Say we have a correct comparison-based algorithm

* Suppose we want to sort the elements in an array B[]
* Assume the elements of B[] are distinct

* Any permutation of the elements is initially possible

* When done, B[] is sorted

 But the algorithm could not have taken the same path in the
comparison tree on different input permutations

Lower Bound for Comparison Sorting
nl ~ 2nlogn

« For a comparison-based sorting algorithm to be correct, it
must have at least that many leaves in its comparison tree

« to have at least n! ~ 2n'ogn leaves, it must have height at least
n log n (since it is only binary branching, the number of nodes
at most doubles at every depth)

« therefore its longest path must be of length at least n log n,
and that it its worst-case running time

Java.lang.Comparable<T> Interface

¢ public int compareTo(T X);
= Returns a negative, zero, or positive value
+ negative if this is before x
+0if this.equals(x)
+ positive if this is after x

* Many classes implement Comparable
= String, Double, Integer, Character, Date,...
= If a class implements Comparable, then its compareTo method is
considered to define that class’s natural ordering




