
Sorting

Lecture 12
CS211 – Spring 2007

2

InsertionSort

Many people sort cards this way
Invariant: everything to left of i is
already sorted
Works especially well when input
is nearly sorted

Worst-case is O(n2)
Consider reverse-sorted input

Best-case is O(n)
Consider sorted input

Expected case is O(n2)
Expected number of inversions is
n(n–1)/4

//sort a[], an array of int
for (int i = 1; i < a.length; i++) {

int temp = a[i];
int k;
for (k = i; 0 < k && temp < a[k–1]; k––)

a[k] = a[k–1];
a[k] = temp;

}

3

SelectionSort

To sort an array of size n:
Examine a[0] to a[n–1]; find
the smallest one and swap it with
a[0]
Examine a[1] to a[n–1]; find
the smallest one and swap it with
a[1]

In general, in step i, examine
a[i] to a[n–1]; find the
smallest one and swap it with
a[i]

This is the other common way for
people to sort cards

Runtime
Worst-case O(n2)
Best-case O(n2)
Expected-case O(n2)

4

Divide & Conquer?

It often pays to
Break the problem into smaller subproblems,
Solve the subproblems separately, and then
Assemble a final solution

This technique is called divide-and-conquer
Caveat: It won’t help unless the partitioning and assembly
processes are inexpensive

Can we apply this approach to sorting?

5

MergeSort

Quintessential divide-and-conquer algorithm

Divide array into equal parts, sort each part, then merge

Questions:

Q1: How do we divide array into two equal parts?
A1: Find middle index: a.length/2

Q2: How do we sort the parts?
A2: call MergeSort recursively!

Q3: How do we merge the sorted subarrays?
A3: We have to write some (easy) code

6

Merging Sorted Arrays A and B

Create an array C of size = size of A + size of B
Keep three indices:

i into A
j into B
k into C

Initialize all three indices to 0 (start of each array)
Compare element A[i] with B[j], and move the smaller
element into C[k]
Increment i or j, whichever one we took, and k
When either A or B becomes empty, copy remaining elements
from the other array (B or A, respectively) into C

7

1 3 4 4 6 7

Merging Sorted Arrays

C = merged array

B

A

1 3 4 6 8

4 7 7 8 9k

i

j

8

MergeSort Analysis

Outline (detailed code on the
website)

Split array into two halves
Recursively sort each half
Merge the two halves

Merge = combine two sorted
arrays to make a single sorted
array

Rule: always choose the
smallest item
Time: O(n) where n is the
combined size of the two
arrays

Runtime recurrence
Let T(n) be the time to sort an
array of size n

T(n) = 2T(n/2) + O(n)
T(1) = 1

Can show by induction that
T(n) is O(n log n)

Alternately, can see that
T(n) is O(n log n) by looking at
tree of recursive calls

9

MergeSort Notes

Asymptotic complexity: O(n log n)
Much faster than O(n2)

Disadvantage
Need extra storage for temporary arrays
In practice, this can be a disadvantage, even though
MergeSort is asymptotically optimal for sorting
Can do MergeSort in place, but this is very tricky (and it
slows down the algorithm significantly)

Are there good sorting algorithms that do not use so
much extra storage?

Yes: QuickSort

10

QuickSort

Intuitive idea
Given an array A to sort, choose a pivot value p
Partition A into two subarrays, AX and AY

AX contains only elements ≤ p
AY contains only elements ≥ p

Sort subarrays AX and AY separately
Concatenate (not merge!) sorted AX and AY to get sorted A

Concatenation is easier than merging – O(1)

11

20 31 24 19 45 56 4 65 5 72 14 99

pivot partition

5 19
14

4

31
72

56

65 45

24

99

204 5 14 19 24 31 45 56 65 72 99

QuickSort QuickSort

4 5 14 19 20 24 31 45 56 65 72 99

concatenate

12

QuickSort Questions

Key problems
How should we choose a pivot?
How do we partition an array in
place?

Partitioning in place
Can be done in O(n) time (next
slide)

Choosing a pivot
Ideal pivot is the median, since
this splits array in half
Computing the median of an
unsorted array is O(n), but
algorithm is quite complicated
Popular heuristics:

Use first value in array (usually
not a good choice)
Use middle value in array
Use median of first, last, and
middle values in array
Choose a random element

13

In-Place Partitioning

How can we move all the blues to the left of all the reds?

1. Keep two indices, LEFT and RIGHT
2. Initialize LEFT at start of array and RIGHT at end of array
3. Invariant: all elements to left of LEFT are blue

all elements to right of RIGHT are red
4. Keep advancing indices until they pass, maintaining invariant

14

Now neither LEFT nor RIGHT can advance and maintain invariant.
We can swap red and blue pointed to by LEFT and RIGHT indices.
After swap, indices can continue to advance until next conflict.

swap

swap

swap

15

Once indices cross, partitioning is done
If you replace blue with ≤ p and red with ≥ p, this is
exactly what we need for QuickSort partitioning
Notice that after partitioning, array is partially sorted
Recursive calls on partitioned subarrays will sort
subarrays
No need to copy/move arrays, since we partitioned in
place

16

QuickSort Analysis

Runtime analysis (worst-case)
Partition can work badly, producing this:
Runtime recurrence

T(n) = T(n–1) + n
This can be solved to show worst-case T(n) is O(n2)

Runtime analysis (expected-case)
More complex recurrence
Can solve to show expected T(n) is O(n log n)

Improve constant factor by avoiding QuickSort on small sets
Switch to InsertionSort (for example) for sets of size, say, ≤ 9
Definition of small depends on language, machine, etc.

p > p

17

Sorting Algorithm Summary

The ones we have discussed
InsertionSort
SelectionSort
MergeSort
QuickSort

Other sorting algorithms
HeapSort (will revisit this)
ShellSort (in text)
BubbleSort (nice name)
RadixSort
BinSort
CountingSort

Why so many? Do computer
scientists have some kind of
sorting fetish or what?

Stable sorts: Ins, Sel, Mer
Worst-case O(n log n): Mer,
Hea

Expected O(n log n):
Mer, Hea, Qui

Best for nearly-sorted sets:
Ins
No extra space needed: Ins,
Sel, Hea
Fastest in practice: Qui
Least data movement: Sel

18

Lower Bound for Comparison Sorting

Goal: Determine the minimum
time required to sort n items
Note: we want worst-case, not
best-case time

Best-case doesn’t tell us much;
for example, we know Insertion
Sort takes O(n) time on
already-sorted input
Want to know the worst-case
time for the best possible
algorithm

But how can we prove
anything about the best
possible algorithm?

We want to find characteristics
that are common to all sorting
algorithms
Let’s limit attention to
comparison-based algorithms
and try to count number of
comparisons

19

Comparison Trees

Comparison-based algorithms
make decisions based on
comparison of data elements
This gives a comparison tree
If the algorithm fails to
terminate for some input, then
the comparison tree is infinite
The height of the comparison
tree represents the worst-case
number of comparisons for that
algorithm
Can show that any correct
comparison-based algorithm
must make at least n log n
comparisons in the worst case

a[i] < a[j]

yesno

20

Lower Bound for Comparison Sorting

Say we have a correct comparison-based algorithm

Suppose we want to sort the elements in an array B[]

Assume the elements of B[] are distinct

Any permutation of the elements is initially possible

When done, B[] is sorted

But the algorithm could not have taken the same path in the
comparison tree on different input permutations

21

How many input permutations are possible? n! ~ 2n log n

For a comparison-based sorting algorithm to be correct, it
must have at least that many leaves in its comparison tree

to have at least n! ~ 2n log n leaves, it must have height at least
n log n (since it is only binary branching, the number of nodes
at most doubles at every depth)

therefore its longest path must be of length at least n log n,
and that it its worst-case running time

Lower Bound for Comparison Sorting

22

java.lang.Comparable<T> Interface

public int compareTo(T x);
Returns a negative, zero, or positive value

negative if this is before x
0 if this.equals(x)
positive if this is after x

Many classes implement Comparable
String, Double, Integer, Character, Date,…
If a class implements Comparable, then its compareTo method is
considered to define that class’s natural ordering

Comparison-based sorting methods should work with
Comparable for maximum generality

