3. Find x.

Jem

4cm

Searching
and Asymptotic Complexity

Lecture 11
CS211 - Spring 2007

Announcements

* Prelim 1 * Prelim 1 review sessions
* Thursday, March 8 = Wednesday 3/7, 7:30-9pm & 9-
7:30pm - 9:00pm 10:30pm, Upson B17 (sessions
= Uris Auditorium are identical)
= Topics = See Exams on course website
+ all material up to (but not for more information
including) searching and sorting L)
(this week's topics) = Individual appointments are
« including interfaces & available if you cannot attend
inheritance the review sessions (email one
TA to arrange appointment)
« Exam conflicts * Old exams will be available for
= Email Kelly Patwell ASAP review on the course website
« Partners still needed — if you
¢ A3 due Wednesday, March are interested in working with a
14,11:59 pm partner, contact Prof Schwartz

2

Announcements
* TA midterm evaluations will be *+ BOOM 2007
conducted online Monday » Wednesday 2/28, 4-6 pm,
2/26-Friday 3/9 Duffield Atrium
* Full participation is * Opening Ceremony 3:45 pm
encouraged * http://www.cis.cornell.edu/b
« Accessible at 00m/2007sp/
http://www.engineering.corne « Sponsored by Cisco, Credit
11.edu/TAEval/survey.cfm Suisse, and FAST

* Refreshments available

* You will see lots of cool
projects and get to vote for
your favorite for the "People's
Choice Award".

What Makes a Good Algorithm?

* Suppose you have two possible algorithms or data structures that
basically do the same thing; which is better?

* Well... what do we mean by better?
= Faster?
= Less space?

Easier to code?

Easier to maintain?

Required for homework?

* How do we measure time and space for an algorithm?

Sample Problem: Searching

» Determine if a sorted array of integers contains a given integer
* First solution: Linear Search (check each element)

static boolean find (int[] a, int item) {
for (int i = 0; i < a.length; i++) {
if (a[i] == item) return true;
3
return false;
3
static boolean find (int[] a, int item) {
for (int x - a) {
if (x == item) return true;

3

return false;

Sample Problem: Searching

Second static boolean find (int[] a, int item) {
solution: int low = 0;
Binary Search int high = a.length - 1;

while (low <= high) {
int mid = (low + high)/2;
it (a[mid] < item)
low = mid + 1;
else if (a[mid] > item)
high = mid - 1;
else return true;
3

return false;

Linear Search vs Binary Search

* Which one is better?
= Linear Search is easier to Use the size of the input rather
program than the input itself
= But Binary Search is faster... = For our sample search
isn't it? problem, the input size is n+1
where n is the array size
* How do we measure to show
that one is faster than the other

= Experiment? Count the number of “basic
= Proof? steps” rather than computing
= Which inputs do we use? exact times

One Basic Step = One Time Unit

* Basic step:

= input or output of a scalar
value

= accessing the value of a scalar
variable, array element, or field
of an object

= assignment to a variable, array
element, or field of an object

= a single arithmetic or logical
operation

= method invocation (not
counting argument evaluation
and execution of the method
body)

 For a conditional, count
number of basic steps on the
branch that is executed

* For a loop, count number of
basic steps in loop body times
the number of iterations

For a method, count number
of basic steps in method body
(including steps needed to
prepare stack-frame)

Runtime vs Number of Basic Steps

* But is this cheating? * Which is better?
= The runtime is not the same as = norn?time?
the number of basic steps = 100 n or n? time?
= Time per basic step varies = 10,000 n or n? time?
depending on computer, on

compiler, on details of code... o
* As n gets large, multiplicative
. constants become less
* Well...yes, in a way important
= But the number of basic steps
is proportional to the actual
runtime
Ignore multiplicative constants

Using Big-O to Hide Constants

* We say f(n) is order of g(n) if f(n)
is bounded by a constant times
a(n)

« Notation: f(n) is O(g(n))

* Roughly, f(n) is O(g(n)) means
that f(n) grows like g(n) or slower,
to within a constant factor

« "Constant" means fixed and
independent of n

Example: n? +nis O(n?)
* We know n < n? for n >1
* Son?+n<2n?forn>1

« So by definition, n2 + n is O(n?)
for c=2 and N=1

Formal definition: f(n) is O(g(n)) if there exist
constants ¢ and N such that for all n > N, f(n) < c-g(n)

A Graphical View

N

To prove that f(n) is O(g(n)):
= Find an N and c such that f(n) < ¢ g(n) for all n=N
= We call the pair (c, N) a witness pair for proving that f(n) is O(g(n))

1

Big-O Examples

Claim: 100 n + log n is O(n)
We know logn<nforn>1

S0100n+logn<101n
forn>1
So by definition,
100 n + log n is O(n)
forc=10land N=1

Claim: logg n is O(log, n)
since logg n is (logg A)(log, n)

Question: Which grows faster:
\n or log n?

Big-O Examples

e Letf(n)=3n2+6n-7 ¢ Only the leading term (the
= f(n) is O(n?) term that grows most rapidly)
= f(n) is O(n3) matters
= f(n) is O(n%)

e g(n)=4nlogn+34n-89
= g(n) is O(n log n)
= g(n) is O(n?)
¢ h(n) =20-2" + 40n
= h(n) is O(2")
e an)=34
= a(n) is O(1)

Problem-Size Examples

* Suppose we have a computing device that can

execute 1000 operations per second; how large a
problem can we solve?

1 second 1 minute 1 hour
n 1000 60,000 3,600,000
nlogn 140 4893 200,000
n? 31 244 1897
3n? 18 144 1096
nd 10 39 153
2n 9 15 21

Commonly Seen Time Bounds

0O(1) constant excellent
O(log n) logarithmic excellent
o(n) linear good
O(n log n) nlogn pretty good

0o(n?) quadratic OK
O(n3) cubic maybe OK
o(2") exponential too slow

Worst-Case/Expected-Case Bounds

* We can'’t possibly determine * Worst-case
time bounds for all possible

= Determine how much time is
inputs of size n

needed for the worst possible
input of size n

Determine number of steps for ~ * Expected-case

either = Determine how much time is
= worst-case or needed on average for all
inputs of size n
= expected-case

Our Simplifying Assumptions
* Use the size of the input rather than the input itself — n

* Count the number of “basic steps” rather than computing exact
times

* Multiplicative constants and small inputs ignored (order-of, big-O)

* Determine number of steps for either
= worst-case
= expected-case

* These assumptions allow us to analyze algorithms effectively

17

Worst-Case Analysis of Searching

Linear Search Binary Search

static boolean find (int[] a, int item) { || static boolean find (int[] a, int item) {
i i int low = 0;
int high = a.length - 1;
while (low <= high) {
return false; int mid = (low + high)/2;
3 if (a[mid] < item)
Tow = mid+1;

i < a.length; i++) {
item) return true;

else if (a[mid] > item)

high = mid - 1;
else return true;

X

return false;

Comparison of Algorithms

Linear vs. Binary Search

25

. —

10

o

o 5 10 15 20 25

Number of Items in Array

—=— Linear Search Binary Search

Comparison of Algorithms

Linear vs. Binary Search

Number of Items in Array

—=— Linear Search Binary Search

20

Comparison of Algorithms

Linear vs. Binary Search

100000000
10000000
1000000
100000
10000
1000

100

10

1 10 100 1000 10000 100000 1000000 1000000 1E+08
Number of Items in Array o

—=— Linear Search Binary Search

19
Comparison of Algorithms
Linear vs. Binary Search
25000000
20000000
15000000
10000000
5000000
o v v -
o 5000000 10000000 15000000 20000000 25000000
Number of Items in Array
—®— Linear Search Binary Search
21

22

Analysis of Matrix Multiplication

By convention, matrix problems are measured in terms of n,
the number of rows and columns

= Note that the input size is really 2n2, not n

= Worst-case time is O(n3)

= Expected-case time is also O(n?)

Code for multiplying n-by-n matrices A and B:

for (i =05 i <n; i++)
for g =0; j <n; j+t) {
crilnl = o;

for (k = 0; k < n; k++)
CLi101 += ALTIIKI*BIKIO1;

23

Remarks

* Once you get the hang of this, you can quickly zero in
on what is relevant for determining asymptotic
complexity

= For example, you can usually ignore everything that is not in
the innermost loop. Why?

* Main difficulty:
= Determining runtime for recursive programs

24

Why Bother with Runtime Analysis?

* Computers are so fast these
days that we can do whatever
we want using just simple
algorithms and data
structures, right?

* Well...not really — data-
structure/algorithm
improvements can be a very
big win

* Scenario:

= A runs in n? msec
= A' runs in n%/10 msec
= B runsin 10 n log n msec

* Problem of size n=103
= A: 108 sec ~ 17 minutes
= A" 102 sec ~ 1.7 minutes
= B: 10% sec ~ 1.7 minutes

* Problem of size n=108
= A: 109 sec ~ 30 years
= A" 108 sec ~ 3 years
= B: 2.10° sec ~ 2 days

1 day = 86,400 sec ~ 10° sec
1,000 days ~ 3 years

25

Algorithms for the Human Genome

* Human genome
= 3.5 billion nucleotides

Growth of GenBank

Limitations of Runtime Analysis

* Big-O can hide a very large
constant
= Example: selection
= Example: small problems

* The specific problem you want
to solve may not be the worst
case

= Example: Simplex method for
linear programming

* Your program may not be run
often enough to make analysis
worthwhile

= Example:
one-shot vs. every day

* You may be analyzing and
improving the wrong part of
the program

= Very common situation
= Should use profiling tools

27

~1Gb
LR 11000
N
* @1 base-pair instruction/usec = =
= n? _ 388445 years o Lol §
H i
= nlog n — 30.824 hours £ o ws00 g
= n— 1 hour B o x
3 o
2 ¥ 3800 mi
. /
/ 200
v e
) SRS -
P I R e
2
Summary

e Asymptotic complexity

= Used to measure of time (or space) required by an algorithm
= Measure of the algorithm, not the problem

¢ Searching a sorted array

= Linear search: O(n) worst-case time
= Binary search: O(log n) worst-case time

* Matrix operations:

= Note: n = number-of-rows = number-of-columns

= Matrix-vector product: O(n?) worst-case time

= Matrix-matrix multiplication: O(n%) worst-case time
* More later with sorting and graph algorithms

28

