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Announcements
Prelim 1

Thursday, March 8
7:30pm - 9:00pm
Uris Auditorium
Topics

all material up to (but not 
including) searching and sorting 
(this week’s topics)
including interfaces & 
inheritance

Exam conflicts
Email Kelly Patwell ASAP

A3 due Wednesday, March 
14, 11:59 pm

Prelim 1 review sessions
Wednesday 3/7, 7:30-9pm & 9-
10:30pm, Upson B17 (sessions 
are identical)  
See Exams on course website 
for more information
Individual appointments are 
available if you cannot attend 
the review sessions (email one
TA to arrange appointment)

Old exams will be available for 
review on the course website
Partners still needed – if you 
are interested in working with a 
partner, contact Prof Schwartz
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Announcements

TA midterm evaluations will be 
conducted online Monday 
2/26-Friday 3/9
Full participation is 
encouraged
Accessible at 
http://www.engineering.corne
ll.edu/TAEval/survey.cfm

BOOM 2007
Wednesday 2/28, 4-6 pm, 
Duffield Atrium
Opening Ceremony 3:45 pm
http://www.cis.cornell.edu/b
oom/2007sp/

Sponsored by Cisco, Credit
Suisse, and FAST
Refreshments available
You will see lots of cool 
projects and get to vote for 
your favorite for the "People's 
Choice Award".
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What Makes a Good Algorithm?

Suppose you have two possible algorithms or data structures that
basically do the same thing; which is better?

Well… what do we mean by better?
Faster?
Less space?
Easier to code?
Easier to maintain?
Required for homework?

How do we measure time and space for an algorithm?
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Sample Problem: Searching

static boolean find (int[] a, int item) {
for (int i = 0; i < a.length; i++) {

if (a[i] == item) return true;
}
return false;

}

Determine if a sorted array of integers contains a given integer
First solution: Linear Search (check each element)

static boolean find (int[] a, int item) {
for (int x : a) {

if (x == item) return true;
}
return false;

}
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Sample Problem: Searching

static boolean find (int[] a, int item) {
int low = 0;
int high = a.length - 1;
while (low <= high) {

int mid = (low + high)/2;
if (a[mid] < item)

low = mid + 1;
else if (a[mid] > item)

high = mid - 1;
else return true;

}
return false;

} 

Second 
solution: 
Binary Search
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Linear Search vs Binary Search

Which one is better?
Linear Search is easier to 
program 
But Binary Search is faster…
isn’t it?

How do we measure to show 
that one is faster than the other

Experiment?
Proof?
Which inputs do we use?

Simplifying assumption #1:
Use the size of the input rather 
than the input itself

For our sample search 
problem, the input size is n+1 
where n is the array size

Simplifying assumption #2:
Count the number of “basic 
steps” rather than computing 
exact times
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One Basic Step = One Time Unit

Basic step:
input or output of a scalar 
value
accessing the value of a scalar 
variable, array element, or field 
of an object
assignment to a variable, array 
element, or field of an object
a single arithmetic or logical 
operation
method invocation (not 
counting argument evaluation 
and execution of the method 
body)

For a conditional, count 
number of basic steps on the 
branch that is executed

For a loop, count number of 
basic steps in loop body times 
the number of iterations

For a method, count number 
of basic steps in method body 
(including steps needed to 
prepare stack-frame)
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Runtime vs Number of Basic Steps

But is this cheating?
The runtime is not the same as 
the number of basic steps
Time per basic step varies 
depending on computer, on 
compiler, on details of code…

Well…yes, in a way
But the number of basic steps 
is proportional to the actual 
runtime

Which is better?
n or n2 time?
100 n or n2 time?
10,000 n or n2 time?

As n gets large, multiplicative 
constants become less 
important

Simplifying assumption #3:
Ignore multiplicative constants
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Using Big-O to Hide Constants
We say f(n) is order of g(n) if f(n) 
is bounded by a constant times 
g(n)

Notation: f(n) is O(g(n))

Roughly, f(n) is O(g(n)) means 
that f(n) grows like g(n) or slower, 
to within a constant factor

"Constant" means fixed and 
independent of n

Example: n2 + n is O(n2)

We know n ≤ n2 for n ≥1

So n2 + n ≤ 2n2 for n ≥1

So by definition, n2 + n is O(n2) 
for c=2 and N=1

Formal definition: f(n) is O(g(n)) if there exist 
constants c and N such that for all n ≥ N, f(n) ≤ c·g(n)

11

A Graphical View

To prove that f(n) is O(g(n)):
Find an N and c such that f(n) ≤ c g(n) for all n≥N
We call the pair (c, N) a witness pair for proving that f(n) is O(g(n))

c·g(n)

f(n)

N
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Big-O Examples

Claim: 100 n + log n is O(n)

We know log n ≤ n for n ≥ 1

So 100 n + log n ≤ 101 n 
for n ≥ 1

So by definition,
100 n + log n is O(n)

for c = 101 and N = 1

Claim: logB n is O(logA n)

since logB n is (logB A)(logA n)

Question: Which grows faster: 
n or log n?−
√
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Big-O Examples

Let f(n) = 3n2 + 6n – 7
f(n) is O(n2)
f(n) is O(n3)
f(n) is O(n4)
…

g(n) = 4 n log n + 34 n – 89
g(n) is O(n log n)
g(n) is O(n2)

h(n) = 20·2n + 40n
h(n) is O(2n)

a(n) = 34
a(n) is O(1)

Only the leading term (the 
term that grows most rapidly) 
matters
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Problem-Size Examples

Suppose we have a computing device that can 
execute 1000 operations per second; how large a 
problem can we solve?

1 second 1 minute 1 hour

n 1000 60,000 3,600,000
n log n 140 4893 200,000

n2 31 244 1897
3n2 18 144 1096
n3 10 39 153
2n 9 15 21
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Commonly Seen Time Bounds

O(1) constant excellent

O(log n) logarithmic excellent

O(n) linear good

O(n log n) n log n pretty good

O(n2) quadratic OK

O(n3) cubic maybe OK

O(2n) exponential too slow
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Worst-Case/Expected-Case Bounds

We can’t possibly determine 
time bounds for all possible 
inputs of size n

Simplifying assumption #4:
Determine number of steps for 
either

worst-case or
expected-case

Worst-case
Determine how much time is 
needed for the worst possible
input of size n

Expected-case
Determine how much time is 
needed on average for all 
inputs of size n
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Our Simplifying Assumptions

Use the size of the input rather than the input itself – n

Count the number of “basic steps” rather than computing exact 
times

Multiplicative constants and small inputs ignored (order-of, big-O)

Determine number of steps for either
worst-case
expected-case

These assumptions allow us to analyze algorithms effectively
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Worst-Case Analysis of Searching

Linear Search 

static boolean find (int[] a, int item) {
for (int i = 0; i < a.length; i++) {

if (a[i] == item) return true;
}
return false;

}

worst-case time = O(n)

Binary Search

static boolean find (int[] a, int item) {
int low = 0;
int high = a.length - 1;
while (low <= high) {

int mid = (low + high)/2;
if (a[mid] < item)

low = mid+1;
else if (a[mid] > item)

high = mid - 1;
else return true;

}
return false;

}

worst-case time = O(log n)



19

Comparison of Algorithms

Linear vs. Binary Search
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Comparison of Algorithms
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Comparison of Algorithms

Linear vs. Binary Search
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Comparison of Algorithms

Linear vs. Binary Search
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Analysis of Matrix Multiplication

Code for multiplying n-by-n  matrices A and B:

By convention, matrix problems are measured in terms of n, 
the number of rows and columns

Note that the input size is really 2n2, not n
Worst-case time is O(n3)
Expected-case time is also O(n3)

for (i = 0; i < n; i++)
for (j = 0; j < n; j++) {

C[i][j] = 0;
for (k = 0; k < n; k++)

C[i][j] += A[i][k]*B[k][j];
}
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Remarks

Once you get the hang of this, you can quickly zero in 
on what is relevant for determining asymptotic 
complexity

For example, you can usually ignore everything that is not in 
the innermost loop.  Why?

Main difficulty:
Determining runtime for recursive programs
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Why Bother with Runtime Analysis?

Computers are so fast these 
days that we can do whatever 
we want using just simple 
algorithms and data 
structures, right?
Well…not really – data-
structure/algorithm 
improvements can be a very
big win
Scenario:

A runs in n2 msec
A' runs in n2/10 msec
B runs in 10 n log n msec

Problem of size n=103

A: 103 sec ≈ 17 minutes
A': 102 sec ≈ 1.7 minutes
B: 102 sec ≈ 1.7 minutes

Problem of size n=106

A: 109 sec ≈ 30 years
A': 108 sec ≈ 3 years
B: 2·105 sec ≈ 2 days

1 day = 86,400 sec ≈ 105 sec
1,000 days ≈ 3 years
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Algorithms for the Human Genome

Human genome 
= 3.5 billion nucleotides 
~ 1 Gb

@1 base-pair instruction/μsec
n2 → 388445 years
n log n → 30.824 hours
n → 1 hour
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Limitations of Runtime Analysis

Big-O can hide a very large 
constant

Example: selection
Example: small problems

The specific problem you want 
to solve may not be the worst 
case

Example: Simplex method for 
linear programming

Your program may not be run 
often enough to make analysis 
worthwhile

Example: 
one-shot vs. every day

You may be analyzing and 
improving the wrong part of 
the program

Very common situation
Should use profiling tools
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Summary

Asymptotic complexity 
Used to measure of time (or space) required by an algorithm
Measure of the algorithm, not the problem

Searching a sorted array 
Linear search: O(n) worst-case time
Binary search: O(log n) worst-case time

Matrix operations:
Note: n = number-of-rows = number-of-columns
Matrix-vector product: O(n2) worst-case time
Matrix-matrix multiplication: O(n3) worst-case time

More later with sorting and graph algorithms


