
Searching
and Asymptotic Complexity

Lecture 11
CS211 – Spring 2007

2

Announcements
Prelim 1

Thursday, March 8
7:30pm - 9:00pm
Uris Auditorium
Topics

all material up to (but not
including) searching and sorting
(this week’s topics)
including interfaces &
inheritance

Exam conflicts
Email Kelly Patwell ASAP

A3 due Wednesday, March
14, 11:59 pm

Prelim 1 review sessions
Wednesday 3/7, 7:30-9pm & 9-
10:30pm, Upson B17 (sessions
are identical)
See Exams on course website
for more information
Individual appointments are
available if you cannot attend
the review sessions (email one
TA to arrange appointment)

Old exams will be available for
review on the course website
Partners still needed – if you
are interested in working with a
partner, contact Prof Schwartz

3

Announcements

TA midterm evaluations will be
conducted online Monday
2/26-Friday 3/9
Full participation is
encouraged
Accessible at
http://www.engineering.corne
ll.edu/TAEval/survey.cfm

BOOM 2007
Wednesday 2/28, 4-6 pm,
Duffield Atrium
Opening Ceremony 3:45 pm
http://www.cis.cornell.edu/b
oom/2007sp/

Sponsored by Cisco, Credit
Suisse, and FAST
Refreshments available
You will see lots of cool
projects and get to vote for
your favorite for the "People's
Choice Award".

4

What Makes a Good Algorithm?

Suppose you have two possible algorithms or data structures that
basically do the same thing; which is better?

Well… what do we mean by better?
Faster?
Less space?
Easier to code?
Easier to maintain?
Required for homework?

How do we measure time and space for an algorithm?

5

Sample Problem: Searching

static boolean find (int[] a, int item) {
for (int i = 0; i < a.length; i++) {

if (a[i] == item) return true;
}
return false;

}

Determine if a sorted array of integers contains a given integer
First solution: Linear Search (check each element)

static boolean find (int[] a, int item) {
for (int x : a) {

if (x == item) return true;
}
return false;

}

6

Sample Problem: Searching

static boolean find (int[] a, int item) {
int low = 0;
int high = a.length - 1;
while (low <= high) {

int mid = (low + high)/2;
if (a[mid] < item)

low = mid + 1;
else if (a[mid] > item)

high = mid - 1;
else return true;

}
return false;

}

Second
solution:
Binary Search

7

Linear Search vs Binary Search

Which one is better?
Linear Search is easier to
program
But Binary Search is faster…
isn’t it?

How do we measure to show
that one is faster than the other

Experiment?
Proof?
Which inputs do we use?

Simplifying assumption #1:
Use the size of the input rather
than the input itself

For our sample search
problem, the input size is n+1
where n is the array size

Simplifying assumption #2:
Count the number of “basic
steps” rather than computing
exact times

8

One Basic Step = One Time Unit

Basic step:
input or output of a scalar
value
accessing the value of a scalar
variable, array element, or field
of an object
assignment to a variable, array
element, or field of an object
a single arithmetic or logical
operation
method invocation (not
counting argument evaluation
and execution of the method
body)

For a conditional, count
number of basic steps on the
branch that is executed

For a loop, count number of
basic steps in loop body times
the number of iterations

For a method, count number
of basic steps in method body
(including steps needed to
prepare stack-frame)

9

Runtime vs Number of Basic Steps

But is this cheating?
The runtime is not the same as
the number of basic steps
Time per basic step varies
depending on computer, on
compiler, on details of code…

Well…yes, in a way
But the number of basic steps
is proportional to the actual
runtime

Which is better?
n or n2 time?
100 n or n2 time?
10,000 n or n2 time?

As n gets large, multiplicative
constants become less
important

Simplifying assumption #3:
Ignore multiplicative constants

10

Using Big-O to Hide Constants
We say f(n) is order of g(n) if f(n)
is bounded by a constant times
g(n)

Notation: f(n) is O(g(n))

Roughly, f(n) is O(g(n)) means
that f(n) grows like g(n) or slower,
to within a constant factor

"Constant" means fixed and
independent of n

Example: n2 + n is O(n2)

We know n ≤ n2 for n ≥1

So n2 + n ≤ 2n2 for n ≥1

So by definition, n2 + n is O(n2)
for c=2 and N=1

Formal definition: f(n) is O(g(n)) if there exist
constants c and N such that for all n ≥ N, f(n) ≤ c·g(n)

11

A Graphical View

To prove that f(n) is O(g(n)):
Find an N and c such that f(n) ≤ c g(n) for all n≥N
We call the pair (c, N) a witness pair for proving that f(n) is O(g(n))

c·g(n)

f(n)

N

12

Big-O Examples

Claim: 100 n + log n is O(n)

We know log n ≤ n for n ≥ 1

So 100 n + log n ≤ 101 n
for n ≥ 1

So by definition,
100 n + log n is O(n)

for c = 101 and N = 1

Claim: logB n is O(logA n)

since logB n is (logB A)(logA n)

Question: Which grows faster:
n or log n?−
√

13

Big-O Examples

Let f(n) = 3n2 + 6n – 7
f(n) is O(n2)
f(n) is O(n3)
f(n) is O(n4)
…

g(n) = 4 n log n + 34 n – 89
g(n) is O(n log n)
g(n) is O(n2)

h(n) = 20·2n + 40n
h(n) is O(2n)

a(n) = 34
a(n) is O(1)

Only the leading term (the
term that grows most rapidly)
matters

14

Problem-Size Examples

Suppose we have a computing device that can
execute 1000 operations per second; how large a
problem can we solve?

1 second 1 minute 1 hour

n 1000 60,000 3,600,000
n log n 140 4893 200,000

n2 31 244 1897
3n2 18 144 1096
n3 10 39 153
2n 9 15 21

15

Commonly Seen Time Bounds

O(1) constant excellent

O(log n) logarithmic excellent

O(n) linear good

O(n log n) n log n pretty good

O(n2) quadratic OK

O(n3) cubic maybe OK

O(2n) exponential too slow

16

Worst-Case/Expected-Case Bounds

We can’t possibly determine
time bounds for all possible
inputs of size n

Simplifying assumption #4:
Determine number of steps for
either

worst-case or
expected-case

Worst-case
Determine how much time is
needed for the worst possible
input of size n

Expected-case
Determine how much time is
needed on average for all
inputs of size n

17

Our Simplifying Assumptions

Use the size of the input rather than the input itself – n

Count the number of “basic steps” rather than computing exact
times

Multiplicative constants and small inputs ignored (order-of, big-O)

Determine number of steps for either
worst-case
expected-case

These assumptions allow us to analyze algorithms effectively

18

Worst-Case Analysis of Searching

Linear Search

static boolean find (int[] a, int item) {
for (int i = 0; i < a.length; i++) {

if (a[i] == item) return true;
}
return false;

}

worst-case time = O(n)

Binary Search

static boolean find (int[] a, int item) {
int low = 0;
int high = a.length - 1;
while (low <= high) {

int mid = (low + high)/2;
if (a[mid] < item)

low = mid+1;
else if (a[mid] > item)

high = mid - 1;
else return true;

}
return false;

}

worst-case time = O(log n)

19

Comparison of Algorithms

Linear vs. Binary Search

0

5

10

15

20

25

0 5 10 15 20 25

Number of Items in Array

Linear Search Binary Search

20

Comparison of Algorithms

Linear vs. Binary Search

0

100

200

300

400

500

600

700

800

0 100 200 300 400 500 600 700 800

Number of Items in Array

Linear Search Binary Search

21

Comparison of Algorithms

Linear vs. Binary Search

0

5000000

10000000

15000000

20000000

25000000

0 5000000 10000000 15000000 20000000 25000000

Number of Items in Array

Linear Search Binary Search

22

Comparison of Algorithms

Linear vs. Binary Search

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000 10000 100000 1000000 1000000
0

1E+08

Number of Items in Array

Linear Search Binary Search

23

Analysis of Matrix Multiplication

Code for multiplying n-by-n matrices A and B:

By convention, matrix problems are measured in terms of n,
the number of rows and columns

Note that the input size is really 2n2, not n
Worst-case time is O(n3)
Expected-case time is also O(n3)

for (i = 0; i < n; i++)
for (j = 0; j < n; j++) {

C[i][j] = 0;
for (k = 0; k < n; k++)

C[i][j] += A[i][k]*B[k][j];
}

24

Remarks

Once you get the hang of this, you can quickly zero in
on what is relevant for determining asymptotic
complexity

For example, you can usually ignore everything that is not in
the innermost loop. Why?

Main difficulty:
Determining runtime for recursive programs

25

Why Bother with Runtime Analysis?

Computers are so fast these
days that we can do whatever
we want using just simple
algorithms and data
structures, right?
Well…not really – data-
structure/algorithm
improvements can be a very
big win
Scenario:

A runs in n2 msec
A' runs in n2/10 msec
B runs in 10 n log n msec

Problem of size n=103

A: 103 sec ≈ 17 minutes
A': 102 sec ≈ 1.7 minutes
B: 102 sec ≈ 1.7 minutes

Problem of size n=106

A: 109 sec ≈ 30 years
A': 108 sec ≈ 3 years
B: 2·105 sec ≈ 2 days

1 day = 86,400 sec ≈ 105 sec
1,000 days ≈ 3 years

26

Algorithms for the Human Genome

Human genome
= 3.5 billion nucleotides
~ 1 Gb

@1 base-pair instruction/μsec
n2 → 388445 years
n log n → 30.824 hours
n → 1 hour

27

Limitations of Runtime Analysis

Big-O can hide a very large
constant

Example: selection
Example: small problems

The specific problem you want
to solve may not be the worst
case

Example: Simplex method for
linear programming

Your program may not be run
often enough to make analysis
worthwhile

Example:
one-shot vs. every day

You may be analyzing and
improving the wrong part of
the program

Very common situation
Should use profiling tools

28

Summary

Asymptotic complexity
Used to measure of time (or space) required by an algorithm
Measure of the algorithm, not the problem

Searching a sorted array
Linear search: O(n) worst-case time
Binary search: O(log n) worst-case time

Matrix operations:
Note: n = number-of-rows = number-of-columns
Matrix-vector product: O(n2) worst-case time
Matrix-matrix multiplication: O(n3) worst-case time

More later with sorting and graph algorithms

