
Designing, Coding,
and Documenting

Lecture 10
CS211 – Spring 2007

2

Announcements

A2 due Sunday
better start now

Prelim March 8
If you have a conflict, notify Kelly Patwell ASAP
see website for contact info

A3 due March 14
more difficult than the previous assignments – more code
but we will give you lots of direction

3

Quiz 2 – What do you find most difficult?
grammars, parsing.. 37
induction..30
recursion..13
time management, assigment takes too long..12
inheritance...5
understanding assignment directions..............5
nothing...4
linked lists..3
quizzes.. 2
using the Java API.. 2
applying lecture to assignments......................2
staying awake, too dark in classroom............. 2
error handling.. 2
assignment 2...2
reading the textbook..2
debugging..1
getting up in time for class...............................1

4

Quiz 2 – What value is printed?
class Foo {
String s;

Foo(String t) {
s = "Happy " + t;

}

public String toString() {
return s;

}
}

class Bar extends Foo {
Bar(String r) {
super("New " + r);

}
} System.out.println(new Bar("Year!"));

r: "Year!"

super("New Year!")

t: "New Year!"

s: "Happy New Year!"

5

Designing and Writing a Program

Don't sit down at the terminal immediately and start hacking
Design stage – THINK first

about the data you are working with
about the operations you will perform on it
about data structures you will use to represent it
about how to structure all the parts of your program so as to achieve
abstraction and encapsulation

Coding stage – code in small bits
test as you go
understand preconditions and postconditions
insert sanity checks (assert statements in Java are good)
worry about corner cases

Use Java API to advantage

6

The Design-Code-Debug Cycle

Design is faster than debugging (and more fun)
extra time spent designing reduces coding and debugging

Which is better?

Actually, should be more like this:

design code debug

design code debug

7

Divide and Conquer!

Break program into manageable parts that can be
implemented, tested in isolation

Define interfaces for parts to talk to each other –
develop contracts (preconditions, postconditions)

Make sure contracts are obeyed
Clients use interfaces correctly
Implementers implement interfaces correctly (test!)

Key: good interface documentation

8

Pair Programming

Work in pairs
Pilot/copilot

pilot codes, copilot watches and makes suggestions
pilot must convince copilot that code works
take turns

Or: work independently on different parts after
deciding on an interface

frequent design review
each programmer must convince the other
reduces debugging time

Test everything

9

Documentation is Code

Comments (esp. specifications) are as important as
the code itself

determine successful use of code
determine whether code can be maintained
creation/maintenance = 1/10

Documentation belongs in code or as close as
possible

Code evolves, documentation drifts away
Put specs in comments next to code when possible
Separate documentation? Code should link to it.

Avoid useless comments
x = x + 1; //add one to x -- Yuck!
Need to document algorithm? Write a paragraph at the top.
Or break method into smaller, clearer pieces.

10

Javadoc

An important Java documentation tool

Extracts documentation from classes, interfaces
Requires properly formatted comments

Produces browsable, hyperlinked HTML web pages

Java source code
(many files)

Linked HTML web
pages

javadoc

11 12

/**
* Constructs an empty <tt>HashMap</tt> with the specified initial
* capacity and the default load factor (0.75).
*
* @param initialCapacity the initial capacity.
* @throws IllegalArgumentException if the initial capacity is negative.
*/
public HashMap(int initialCapacity) {

this(initialCapacity, DEFAULT_LOAD_FACTOR);
}

/**
* Constructs an empty <tt>HashMap</tt> with the default initial capacity
* (16) and the default load factor (0.75).
*/
public HashMap() {

this.loadFactor = DEFAULT_LOAD_FACTOR;
threshold = (int)(DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR);
table = new Entry[DEFAULT_INITIAL_CAPACITY];
init();

}

How Javadoc is Produced
indicates Javadoc comment

Javadoc keywords

can include HTML

13

Some Useful Javadoc Tags

@return description
Use to describe the return value of the method, if any
E.g., @return the sum of the two intervals

@param parameter-name description
Describes the parameters of the method
E.g., @param i the other interval

@author name
@deprecated reason
@see package.class#member
{@code expression}

Puts expression in code font

14

Developing and Documenting an ADT

1. Write an overview – purpose of the ADT

2. Decide on a set of supported operations

3. Write a specification for each operation

15

1. Writing an ADT Overview

Example abstraction: a closed interval [a,b] on the real number
line

[a,b] = { x | a ≤ x ≤ y }

Example overview:

/**
* An Interval represents a closed interval [a,b]
* on the real number line.
*/ Abstract

description of
the ADT’s

values
Javadoc
comment

16

2. Identify the Operations

Enough operations for needed tasks

Avoid unnecessary operations – keep it simple!
Don’t include operations that client (without access to
internals of class) can implement

17

3. Writing Method Specifications

Include
Signature: types of method arguments, return type
Description of what the method does (abstractly)

Good description (definitional)
/** Add two intervals. The sum of two intervals is
* a set of values containing all possible sums of
* two values, one from each of the two intervals.
*/
public Interval plus(Interval i);

Bad description (operational)
/** Return a new Interval with lower bound a+i.a,
* upper bound b+i.b.
*/
public Interval plus(Interval i);

Not abstract,
might as well

read the code…

18

3. Writing Specifications (cont’d)

Attach before methods of class or interface

/** Add two intervals. The sum of two intervals
is
* a set of values containing all possible sums
of
* two values, one from each of the two
intervals.
*
* @param i the other interval
* @return the sum of the two intervals
*/

Method overview
Method description
Additional tagged
clauses

19

Know Your Audience

Code and specs have a target audience
the programmers who will maintain and use it

Code and specs should be written
With enough documented detail so they can understand it
While avoiding spelling out the obvious

Try it out on the audience when possible
design reviews before coding
code reviews

20

Consistency

A foolish consistency is the hobgoblin of little minds
– Emerson

Pick a consistent coding style, stick with it
Make your code understandable by “little minds”

Teams should set common style

Match style when editing someone else’s code
Not just syntax, also design style

21

Simplicity

The present letter is a very long one, simply because I
had no time to make it shorter. –Blaise Pascal

Be brief. –Strunk & White

Applies to programming… simple code is
Easier and quicker to understand
More likely to be correct

Good code is simple, short, and clear
Save complex algorithms, data structures for where they are
needed
Always reread code (and writing) to see if it can be made
shorter, simpler, clearer

22

Choosing Names

Don’t try to document with variable names
Longer is not necessarily better

int searchForElement(
int[] array_of_elements_to_search,
int element_to_look_for);

int search(int[] a, int x);

Names should be short but suggestive
Local variable names should be short

23

Biggest single source of program errors
Bug fixes never reach all the copies
Think twice before using your editor’s copy-and-paste function

Abstract instead of copying!
Write many calls to a single function rather than copying the
same block of code around

^V

Avoid Copy-and-Paste

24

Design vs Programming by Example

Programming by example:
copy code that does something like what you want
hack it until it works

Problems:
inherit bugs in code
don't understand code fully
usually inherit unwanted functionality
code is a bolted-together hodge-podge

Alternative: design
understand exactly why your code works
reuse abstractions, not code templates

25

What Makes a Good Algorithm?

Suppose you have two possible algorithms or data
structures that basically do the same thing; which is
better?

Well…what do we mean by better?
Faster?
Less space?
Easier to code?
Easier to maintain?
Required for homework?

How do we measure time and space for an algorithm?

26

Inheritance vs Encapsulation

Inheritance is useful, but it is possible to overdo it
Overused by many Java & OO programmers
class C extends D means state of D, methods of
D are accessible in C

Tempting, often useful, but also can be dangerous!
C becomes a subtype of D
Inherit only if a C should be used as a D

all methods of D should still make sense
A function expecting a D will work on a C

Prefer Java interfaces instead

27

Avoid Premature Optimization

Temptations to avoid
Copying code to avoid overhead of abstraction mechanisms
Using more complex algorithms & data structures
unnecessarily
Violating abstraction barriers

Result:
Less simple and clear
Performance gains often negligible

Avoid trying to accelerate performance until
You have the program designed and working
You know that simplicity needs to be sacrificed
You know where simplicity needs to be sacrificed

28

Avoid Duplication

Duplication in source code creates an implicit
constraint to maintain, a quick path to failure

Duplicating code fragments (by copying)
Duplicating specs in classes and in interfaces
Duplicating specifications in code and in external documents
Duplicating same information on many web pages

Solutions:
Named abstractions (e.g., declaring functions)
Indirection (linking pointers)
Generate duplicate information from source (e.g., Javadoc!)

If you must duplicate:
Make duplicates link to each other so always can find all clones

29

Maintain State in One Place

Often state is duplicated for efficiency

But difficult to maintain consistency

Atomicity is the issue
if the system crashes while in the middle of an update, it may
be left in an inconsistent state
difficult to recover

30

How to Make your Group Project Harder

1. Have one person do all the work, so that person burns out,
and no one else can finish the project.

2. Decide that the other member(s) of your group are useless
and don't communicate or meet with them.

3. 1+2: Decide that all the other members of your group are
useless and you are the lone master hacker. Charge off and
code everything up without talking to anyone else. Unless you
are very unlucky, you'll make some bad assumption that
forces all your code to be thrown out anyway.

31

4. Everyone implements pieces of the system with no discussion of
how they will fit together until just before the assignment is due.
You won’t be able to glue it all together in time.

5. Work extremely closely all the time, spending all your time
talking rather than doing actual implementation; the group will
slow down to the speed of the slowest person.
• For extra effectiveness, everyone simultaneously edits files in the

same directory, preferably the same file. Something is always
broken, testing impossible.

6. Don't start until three days before the assignment is due. Pull
three all-nighters in a row. With lack of sleep you will write
broken code. With luck, you will get sick, miss some other
classes as well.

How to Make your Group Project Harder

32

7. Don't ask the TAs or the instructors any questions when design
problems come up; put off working on the project and hope the
problems will magically solve themselves.

8. Don't use any of the techniques for software design that you
learn in this class. This works best if you don't attend class at all
– avoid polluting your mind.

How to Make your Group Project Harder

33

No Silver Bullets

These are all rules of thumb; but there is no panacea,
and every rule has its exceptions

You can only learn by doing – we can't do it for you

Following software engineering rules only makes
success more likely!

