
1

Inheritance

Lecture 8
CS211 – Spring 2007

Gregor Johann Mendel (1822–1884)

2

What is Inheritance?
• OO-programming = Encapsulation + Extensibility

• Encapsulation: permits code to be used without knowing
implementation details
� classes, objects
� visibility declarations such as private, protected

• Extensibility: permits behavior of classes to be changed or
extended without having to rewrite the code of the class
� no need to involve the class implementer
� promotes code reuse

• Mechanism for extensibility in OO-programming: Inheritance

3

Running Example: 8-Puzzle

class Puzzle {

//representation of a puzzle state
private int state;

//create a new random instance
public void scramble() {...}

//say which tile occupies a given position
public int tile(int row, int col) {...}

//move a tile
public boolean move(char c) {...}

}

1 3
4 2 6
7 5 8

4

Representation of State

• One possibility: model puzzle state as an integer between
123456789 and 987654321
� 9 represents the empty square

• To convert integer s into a grid representation:
� Remainder s%10: tile in bottom right position: 8
� Quotient s/10: encoding of remaining tiles: 13942675
� Repeat remainder and quotient to extract remaining tiles

• A similar encoding is used for multidimensional arrays
• We declared state private, so only the Puzzle class knows we

are using this representation -- Encapsulation

139426758
1 3
4 2 6
7 5 8

5

New Requirement

• Suppose you are the client. After receiving puzzle
code, you decide you want the code to keep track of
the number of moves made since the last scramble
operation.

• Implementation is simple:
� keep a counter numMoves, initialized to 0
�method move should increment the counter
�method scramble should reset the counter to 0
� new method printNumMoves for printing value of counter

6

Implementation

• Three approaches:
� Call supplier, apologize profusely, and send them

a new specification. They implement it and charge
you an extra $5K. /

� Rewrite the supplier’s code yourself. Three
months later, you still haven’t figured it out. /

� Use inheritance to define a new class that
extends the behavior of the supplier’s class. ☺

7

Goal

• Define a new class EPuzzle that extends Puzzle

• Tell Java that EPuzzle is just like Puzzle, except:
� it has a new instance variable numMoves
� it has a new instance method printNumMoves
� it has modified versions of scramble and move

8

Picture

state
scramble()

tile()
move()

Puzzle EPuzzle

state
scramble()

tile()
move()

numMoves
printNumMoves()

9

class EPuzzle extends Puzzle {
private int numMoves = 0;
public void scramble() {...}
public boolean move(char d) {...}
public void printNumMoves() {...}

}

• Class EPuzzle is a subclass of class Puzzle
• Class Puzzle is a superclass of class EPuzzle
• An EPuzzle object
� has its own instance variable numMoves and instance

method printNumMoves
� overrides methods scramble and move of Puzzle
� inherits method tile of Puzzle

10

Class Hierarchy

Object

Puzzle Array

EPuzzle
subclass of Puzzle
and Object

superclass of EPuzzle
and Puzzle

superclass of EPuzzle
subclass of Object

Every class (except Object) has a unique
immediate superclass, called its parent

…….

11

Overriding

• A method in a subclass overrides a method in
superclass if:
1. both methods have the same name,
2. both methods have the same signature (number

and type of parameters and return type), and
3. both are static methods or both are instance

methods.

12

Single Inheritance
• Every class is implicitly a subclass of Object
• A class can have exactly one parent

� class Puzzle {…}
• implicitly extends Object

� class EPuzzle extends Puzzle {…}
• explicitly extends Puzzle, and implicitly extends Object since
Puzzle is a subclass of Object

• Class hierarchy in Java is a tree
� subclasses = descendants, superclasses = ancestors

• In C++, a class can have more than one superclass
(multiple inheritance)
� class hierarchy is a directed acyclic graph (dag)

13

Writing the EPuzzle Class

class EPuzzle extends Puzzle {
private int numMoves = 0;

public void printNumMoves() {
System.out.println("Number of moves = "
+ numMoves);

}

public void scramble() {...}
public boolean move(char d) {...}

}

14

scramble and move

• Problem: state was declared private in the Puzzle class
• it is not accessible to EPuzzle!

How should we write scramble and move?
One option: write them from scratch.

Class EPuzzle extends Puzzle {
...

public void scramble() {
state = "978654321";
numMoves = 0;

}

public boolean move(char d) {...}
}

15

Difficulty with Private Variables

• Variable state is declared private, so it is only
accessible to methods in class Puzzle

• In an instance of class EPuzzle, the tile method
can access this variable because the tile method is
inherited from the superclass

• Method scramble defined in class Epuzzle does not
have access to state

• Similarly, any private methods in a superclass are not
accessible to methods in subclass

16

Interesting Point

•EPuzzle objects have an instance variable state because
EPuzzle extends Puzzle

• However, they cannot access it directly, because it is private!
•state is accessible to public methods inherited from Puzzle

(such as tile()) but not to methods written in the EPuzzle
class (such as scramble())

EPuzzle
state

scramble()
tile()
move()

numMoves
printNumMoves()

17

Protected Access
• Access specifier: protected
• A protected instance variable in class S can be

accessed by instance methods defined in S or in any
subclass of S

• A protected method in class S can be invoked from an
instance method defined in S or any subclass of S

• Access checks are done by compiler at compile time:
� For an invocation r.m():

• Determine type of reference r
• Does the corresponding class/interface have a method named
m with appropriate arguments?

• Are the access specifiers of that method appropriate?

18

Proper Code for Puzzle Class

class Puzzle {
protected int state;
public void scramble(){...}
...

}

says state is
accessible from
subclasses

19

Code for EPuzzle

class EPuzzle extends Puzzle {
...

public void scramble() {
state = "978654321"; //OK since state inherited
numMoves = 0;

}

//similar code for move
}

20

Protected Access

• When should variables and methods be declared
protected instead of private?

• Think about extensibility: if subclasses will want
access to a member, it should be declared
protected

• Analogy:
�Which components of a car might a user want to upgrade?
�What wires/subsystems need to be exposed to make the

upgrade easy?

21

Another Solution

• Suppose a class S overrides a method m in its parent
• Methods in S can invoke the overridden method in the

parent as
super.m()

• In particular, can invoke the overridden method in the
overriding method!

• Caveat: cannot compose super more than once as in
super.super.m()

22

Another Definition of EPuzzle
class EPuzzle extends Puzzle {

protected int numMoves = 0;
...
public void scramble() {

super.scramble();
numMoves = 0;

}
public boolean move(char d){

boolean p = super.move(d);
if (p) numMoves++; //legal move?
return p;

}
}

Do not need protected access to state after all!

23

Subtypes

• Inheritance gives a mechanism for creating subtypes
� (Interfaces are another such mechanism)

• If class B extends class A then B is a subtype of A

• Examples:
� Puzzle p = new EPuzzle(); //up-casting
� EPuzzle e = (EPuzzle)p; //down-casting

24

Unexpected Consequence
An overriding method cannot have more

restricted access than the method it overrides

class A {
public int m() {...}

}

class B extends A {
private int m() {...} //illegal!

}

A supR = new B(); //upcasting
supR.m(); //would invoke private method in
class B at runtime!

25

Shadowing Variables
• Like overriding, but for fields instead of methods
� Superclass: variable v of some type
� Subclass: variable v perhaps of some other type
� Method in subclass can access shadowed variable using super.v

• Variable references are resolved using static binding (i.e., at
compile-time), not dynamic binding (i.e., not at runtime)
� Variable reference r.v uses the static type (declared type) of the

variable r, not the runtime type of the object referred to by r

• Shadowing variables is bad medicine and should be avoided

26

Constructors

• Each class has its own constructor
• No overriding of constructors
• Superclass constructor can be invoked explicitly

within subclass constructor using super() with
parameters as needed

• Can invoke other constructors of the same class
using this()

• Call to super() or this() must occur first in the
constructor

27

Abstract Classes
• An abstract class cannot be instantiated
• May have methods without bodies that must be

overridden by a (non-abstract) subclass

abstract class Puzzle {
protected int state;
public void scramble() {

state = 978654321;
}

//abstract methods (no code)
abstract public int tile(int r, int c);
abstract public void move(char d);

}

28

Abstract Classes

• An abstract class is an incomplete
specification
� Cannot be instantiated directly
� Not all methods in abstract class need to be

abstract ― allows code sharing
� Abstract classes are part of the class hierarchy

and the usual subtyping rules apply

29

Use of Abstract Classes

• Variables/methods common to a bunch of related
subclasses can be declared once in Dad and inherited
by all subclasses

• If subclass C wants to do something differently, it can
override Dad’s methods as needed

A B C

abstract class Dad

30

Conclusion

• Key features of object-oriented programming
� Encapsulation: classes and access control
� Inheritance: extending or changing the behavior of

classes without rewriting them from scratch
� Dynamic storage allocation & garbage collection
� Access control: public/private/protected
� Subtyping

