Trees

Lecture 7
CS211 — Spring 2007

Announcements

* A2 is up — check the website
= Due Sunday 2/25 11:59pm
= Register partners in CMS
= Sign up if you want us to help you find a partner
= Work only with your own partner
= Get started early! (Remember Murphy's law)

* Al solutions are up
= Submit regrades online
= Regrades accepted until 2/25

* Please include Cornell netld in email correspondence
= e.g., dancingGurl47@gmail .com does not help us

Tree Overview

 Tree: recursive data structure
(similar to list)

= Each cell may have two or % /®\
more successors (children) 0 o @
= Each cell has at most one
predecessor (parent) (8 (9 @ (®

+ Distinguished cell called

root has no parent General tree Binary tree
= All cells are reachable from

root
Binary tree: tree in which e /Q"D

each cell can have at most (@) @
two children: a left child and a
right child e 6 i
Not a tree List-like tree

3

Tree Terminology

* Mis the root of this tree

* Gis the root of the left subtree of M

* B,H,J, N, and S are leaves

* N is the left child of P; S is the right
child

* P is the parent of N

* Mand G are ancestors of D

* P, N, and S are descendents of W

* Node Jis at depth 2 (i.e., depth =
length of path from root)

* Node W is at height 2 (i.e., height =
length of longest path from leaf)

« A collection of several trees is called
a..?

Class for Binary Tree Cells

class TreeCell {
private Object datum;
private TreeCell left;
private TreeCell right;

public TreeCell (Object x) {datum = x;}
public TreeCell (Object x, TreeCell I, TreeCell r) {

datum = x;
left = 1;
right = r;

3
more methods: getDatum, setDatum,
getLeft, setLeft, getRight, setRight

Class for General Trees

Joy

class GTreeCell { o @

private Object datum;
private GTreeCell left;
private GTreeCell sibling; ™ (8 (9)
appropriate getter and
setter methods

, D® ®O

« Parent node points directly only I'g
to its leftmost child @ """" @
« Leftmost child has pointer to next /
sibling, which points to next ().
sibling, etc.

@{ ®@

General
tree

Tree
represented
using
GTreeCell

Applications of Trees

* Most languages (natural and computer) have a recursive,
hierarchical structure

* This structure is implicit in ordinary textual representation

* Recursive structure can be made explicit by representing
sentences in the language as trees: Abstract Syntax Trees
(ASTs)

* ASTs are easier to optimize, generate code from, etc. than
textual representation

* A parser converts textual representations to AST

Example
* Expression grammar: Text AST Representation
£
— integer a4
E—>(E+E)

* In textual representation 2+3)
= Parentheses show
hierarchical structure
* In tree representation
= Hierarchy is explicit in the

structure of the tree ((2+3) + (5+7)) /(D\

Recursion on trees

* Recursive methods can be written to operate on
trees in an obvious way

¢ In most problems
= Base case
* empty tree
+ leaf node
= Recursive case
+ solve problem on left and right subtrees
+ put solutions together to compute solution for full tree

Searching in a Binary Tree

public static boolean treeSearch(Object x, TreeNode node)
{
if (node == null) return false;
if (node.datum.equals(x)) return true;
return treeSearch(x, node.lchild) ||
treeSearch(x, node.rchild);

e Analog of linear search in lists:
given tree and an object, find out /Ca\
if object is stored in tree e @
* Easy to write recursively, harder b
to write iteratively (® e @

10

Binary Search Tree (BST)

« If the tree data are ordered — in any subtree, /CSD\
= All left descendents of node come before node
= All right descendents of node come after node 9 6

 This makes it much faster to search Q e a e

public static boolean treeSearch (Object x, TreeNode node)
{
if (node == null) return false;
if (node.datum.equals(x)) return true;
if (node.datum.compareTo(x) > 0)
return treeSearch(x, node.lchild);
else return treeSearch(x, node.rchild);

1

Building a BST

» Toinsert a new item
= Pretend to look for the item

. jan
= Put the new node in the
place where you fall off the
tree feb mar
* This can be done using either apr jun may

recursion or iteration
jul
* Example
= Tree uses alphabetical order

= Months appear for insertion
in calendar order

TreeNode

* This version is for a tree of Strings

class TreeNode {
String datum; //data stored at a node
TreeNode Ic d, rchild; //left and right children

public TreeNode(String datum) { //constructor
this.datum = datum;
Ichild = null;
rchild = null;

TreeNode

« ...but you can define a generic one

class TreeNode<T> {
T datum; //data stored at a node
TreeNode<T> Ichild, rchild; //children

public TreeNode(T datum) { //constructor
this.datum = datum;
Ichild = null;
rchild = null;

¥

... new TreeNode<String>("hello™) ...

BST Code

public class BST {
TreeNode root; // The root of the BST

public BSTQ) {
root = null;

3

public void insert(String string) {
root = insert(string, root);

private static TreeNode insert(String string, TreeNode node) {
if (node == null) return new TreeNode(string);
int compare = string.compareTo(node.datum);
if (compare < 0) node.lchild insert(string, node.lchild);
else if (compare > 0) node.rchild = insert(string, node.rch
return node;

What Can Go Wrong?

* A BST makes searches very

fast, unless...

= Nodes are inserted in

alphabetical order
In this case, we're basically
building a linked list (with jan
some extra wasted space for
the Ichi ld fields that aren't

being used)

apr

feb

jul

* BST works great if data
arrives in random order

Printing Contents of BST

*Because of the 7=

* Show the contents of the BST in

ordering rules for a |« aphavetical order.

BST, it's easy to */

. . . public void show O {
print the items in show(root);
alphabetical order Systen.out.printinQ;

= Recursively print Y

everything inthe left | ;rivate static void show(TreeNode node) {
subtree if (node == null) return;

« Print the node show(node. Ichild);
System.out.print(node.datum + "

= Recursively print show(node. rchild);
everything in the 3

right subtree

17

Tree Traversals

* “Walking” over the whole tree * There are other standard

is a tree traversal kinds of traversals
= This is done often enough that = Preorder traversal
there are standard names * Process node
+ Process left subtree
= The previous example is an + Process right subtree
inorder traversal
+ Process left subtree = Postorder traversal
* Process node * Process left subtree
* Process right subtree « Process right subtree

+ Process node
* Note: we're using this for
printing, but any kind of = Level-order traversal

processing can be done + Not recursive
+ Uses a queue

Some Useful Methods

//determine if a node is a leaf
public static boolean isLeaf(TreeNode node) {
return (node != null) && (node.lchild == null)
&& (node.rchild == null);
3

//compute height of tree using postorder traversal

public static int height(TreeNode node) {
if (node == null) return -1; //empty tree -> height undefined
if (isLeaf(node)) return 0;
return 1 + Math.max(height(node. Ichild),height(node.rchild));

//compute number of nodes in tree using postorder traversal
public static int nNodes(TreeNode node) {

if (node == null) return 0;

return 1 + nNodes(node.lIchild) + nNodes(node.rchild);

3

Useful Facts about Binary Trees

¢ 24 = maximum number of depth
nodes at depth d o e
« If height of tree is h J— 9 9

= Minimum number of nodes in
tree=h+1 P
= Maximum number of nodes in 9 @ 0
=204 214 40 = phtl_ .
tree=20+2+ ... +2 2 1 Height 2,
maximum number of nodes

* Complete binary tree
= All levels of tree down to a @)\
certain depth are completely

filled 2
@
Height 2,

minimum number of nodes 2

Tree with Parent Pointers

* In some applications, it is

useful to have trees in which

nodes can reference their

parents '0‘
* Analog of doubly-linked lists a @

21

Things to Think About

* What if we want to delete jan
data from a BST?
feb mar

e A BST works great as long as
it's balanced apr jun may

= How can we keep it

balanced?
jul

22

List Summary

* Alist is a sequence of
elements
= Grow and shrink on demand

= Not random-access, but
sequential access

« List operations
= Create a list
= Access a list and update data
= Change structure of list by
inserting/deleting cells

* Recursion makes sense on
lists; usually have
= Base case: empty list
= Recursive case: non-empty list

* Subspecies of lists

= List with header
= Doubly-linked lists

23

Tree Summary

* Atree is a recursive data structure
= Each cell has 0 or more successors (children)
= Each cell except the root has at exactly one predecessor (parent)
= All cells are reachable from the root
= A cell with no children is called a leaf

* Special case: binary tree
= Binary tree cells have both a left and a right child
= Either or both children can be null

* Trees are useful for exposing the recursive structure of natural
language and computer programs

24

