
1

Trees

Lecture 7
CS211 – Spring 2007

2

Announcements

A2 is up – check the website
Due Sunday 2/25 11:59pm
Register partners in CMS
Sign up if you want us to help you find a partner
Work only with your own partner
Get started early! (Remember Murphy's law)

A1 solutions are up
Submit regrades online
Regrades accepted until 2/25

Please include Cornell netId in email correspondence
e.g., dancingGurl47@gmail.com does not help us

3

Tree Overview

Tree: recursive data structure
(similar to list)

Each cell may have two or
more successors (children)
Each cell has at most one
predecessor (parent)

Distinguished cell called
root has no parent

All cells are reachable from
root

Binary tree: tree in which
each cell can have at most
two children: a left child and a
right child

5

4

7 8 9

2

General tree

5

4

7 8

2

Binary tree

5

4

7 8

Not a tree

5

6

8
List-like tree

4

Tree Terminology
M is the root of this tree
G is the root of the left subtree of M
B, H, J, N, and S are leaves
N is the left child of P; S is the right
child
P is the parent of N
M and G are ancestors of D
P, N, and S are descendents of W
Node J is at depth 2 (i.e., depth =
length of path from root)
Node W is at height 2 (i.e., height =
length of longest path from leaf)
A collection of several trees is called
a ...?

M

G W

PJD

NHB S

5

Class for Binary Tree Cells

class TreeCell {
private Object datum;
private TreeCell left;
private TreeCell right;

public TreeCell (Object x) {datum = x;}
public TreeCell (Object x, TreeCell l, TreeCell r) {

datum = x;
left = l;
right = r;

}
more methods: getDatum, setDatum,
getLeft, setLeft, getRight, setRight

}

6

Class for General Trees

class GTreeCell {
private Object datum;
private GTreeCell left;
private GTreeCell sibling;
appropriate getter and
setter methods

}

5

4

7 8 9

2

7 8 3 1

5

4

7 8 9

2

7 8 3 1

General
tree

Tree
represented
using
GTreeCell

Parent node points directly only
to its leftmost child
Leftmost child has pointer to next
sibling, which points to next
sibling, etc.

7

Applications of Trees

Most languages (natural and computer) have a recursive,
hierarchical structure

This structure is implicit in ordinary textual representation

Recursive structure can be made explicit by representing
sentences in the language as trees: Abstract Syntax Trees
(ASTs)

ASTs are easier to optimize, generate code from, etc. than
textual representation

A parser converts textual representations to AST

8

Example

Expression grammar:
E → integer
E → (E + E)

In textual representation
Parentheses show
hierarchical structure

In tree representation
Hierarchy is explicit in the
structure of the tree

-34 -34

(2 + 3) +

2 3

((2+3) + (5+7))

+

2 3 5 7

+

+

Text AST Representation

9

Recursion on trees

Recursive methods can be written to operate on
trees in an obvious way

In most problems
Base case

empty tree
leaf node

Recursive case
solve problem on left and right subtrees
put solutions together to compute solution for full tree

10

Searching in a Binary Tree

public static boolean treeSearch(Object x, TreeNode node)
{

if (node == null) return false;
if (node.datum.equals(x)) return true;
return treeSearch(x, node.lchild) ||

treeSearch(x, node.rchild);
}

9

8 3 5 7

2

0

Analog of linear search in lists:
given tree and an object, find out
if object is stored in tree
Easy to write recursively, harder
to write iteratively

11

Binary Search Tree (BST)

If the tree data are ordered – in any subtree,
All left descendents of node come before node
All right descendents of node come after node

This makes it much faster to search
2

0 3 7 9

5

8

public static boolean treeSearch (Object x, TreeNode node)
{

if (node == null) return false;
if (node.datum.equals(x)) return true;
if (node.datum.compareTo(x) > 0)

return treeSearch(x, node.lchild);
else return treeSearch(x, node.rchild);

}

12

Building a BST

To insert a new item
Pretend to look for the item
Put the new node in the
place where you fall off the
tree

This can be done using either
recursion or iteration

Example
Tree uses alphabetical order
Months appear for insertion
in calendar order

jan

feb mar

apr mayjun

jul

13

TreeNode

This version is for a tree of Strings

class TreeNode {
String datum; //data stored at a node
TreeNode lchild, rchild; //left and right children

public TreeNode(String datum) { //constructor
this.datum = datum;
lchild = null;
rchild = null;

}
}

14

TreeNode

...but you can define a generic one

class TreeNode<T> {
T datum; //data stored at a node
TreeNode<T> lchild, rchild; //children

public TreeNode(T datum) { //constructor
this.datum = datum;
lchild = null;
rchild = null;

}
}

... new TreeNode<String>("hello") ...

15

BST Code
public class BST {

TreeNode root; // The root of the BST

public BST() {
root = null;

}

public void insert(String string) {
root = insert(string, root);

}

private static TreeNode insert(String string, TreeNode node) {
if (node == null) return new TreeNode(string);
int compare = string.compareTo(node.datum);
if (compare < 0) node.lchild = insert(string, node.lchild);
else if (compare > 0) node.rchild = insert(string, node.rchild);
return node;

}
}

16

What Can Go Wrong?

A BST makes searches very
fast, unless…

Nodes are inserted in
alphabetical order
In this case, we’re basically
building a linked list (with
some extra wasted space for
the lchild fields that aren’t
being used)

BST works great if data
arrives in random order

jan

feb

mar

apr

may

jun

jul

17

Printing Contents of BST

Because of the
ordering rules for a
BST, it’s easy to
print the items in
alphabetical order

Recursively print
everything in the left
subtree
Print the node
Recursively print
everything in the
right subtree

/**
* Show the contents of the BST in
* alphabetical order.
*/
public void show () {

show(root);
System.out.println();

}

private static void show(TreeNode node) {
if (node == null) return;
show(node.lchild);
System.out.print(node.datum + " ");
show(node.rchild);

}

18

Tree Traversals
“Walking” over the whole tree
is a tree traversal

This is done often enough that
there are standard names

The previous example is an
inorder traversal

Process left subtree
Process node
Process right subtree

Note: we’re using this for
printing, but any kind of
processing can be done

There are other standard
kinds of traversals

Preorder traversal
Process node
Process left subtree
Process right subtree

Postorder traversal
Process left subtree
Process right subtree
Process node

Level-order traversal
Not recursive
Uses a queue

19

Some Useful Methods

//determine if a node is a leaf
public static boolean isLeaf(TreeNode node) {

return (node != null) && (node.lchild == null)
&& (node.rchild == null);

}

//compute height of tree using postorder traversal
public static int height(TreeNode node) {

if (node == null) return -1; //empty tree -> height undefined
if (isLeaf(node)) return 0;
return 1 + Math.max(height(node.lchild),height(node.rchild));

}

//compute number of nodes in tree using postorder traversal
public static int nNodes(TreeNode node) {

if (node == null) return 0;
return 1 + nNodes(node.lchild) + nNodes(node.rchild);

}

20

Useful Facts about Binary Trees
2d = maximum number of
nodes at depth d

If height of tree is h
Minimum number of nodes in
tree = h + 1
Maximum number of nodes in
tree = 20 + 21 + … + 2h = 2h+1 – 1

Complete binary tree
All levels of tree down to a
certain depth are completely
filled

5

4

7 8

2

0 4

depth

0

1

2

5

2

4
Height 2,
minimum number of nodes

Height 2,
maximum number of nodes

21

Tree with Parent Pointers

In some applications, it is
useful to have trees in which
nodes can reference their
parents

Analog of doubly-linked lists

5

4

7 8

2

22

Things to Think About

What if we want to delete
data from a BST?

A BST works great as long as
it’s balanced

How can we keep it
balanced?

jan

feb mar

apr mayjun

jul

23

List Summary

A list is a sequence of
elements

Grow and shrink on demand
Not random-access, but
sequential access

List operations
Create a list
Access a list and update data
Change structure of list by
inserting/deleting cells

Recursion makes sense on
lists; usually have

Base case: empty list
Recursive case: non-empty list

Subspecies of lists
List with header
Doubly-linked lists

24

Tree Summary

A tree is a recursive data structure
Each cell has 0 or more successors (children)
Each cell except the root has at exactly one predecessor (parent)
All cells are reachable from the root
A cell with no children is called a leaf

Special case: binary tree
Binary tree cells have both a left and a right child
Either or both children can be null

Trees are useful for exposing the recursive structure of natural
language and computer programs

