s ...
bl ol ot

Tren d wi0_|

@

Thiea

Towe 31 e 77

List Overview

* Arrays
= Random access :)
= Fixed size: cannot grow on demand after creation : (

* Characteristics of some applications
= Do not need random access
= Require a data structure that can grow and shrink dynamically to
accommodate different amounts of data
Lists satisfy these requirements

* Common operations
= List creation
= Accessing elements in a list
= Inserting elements into a list
= Deleting elements from a list

List Operations

¢ An ADT (Abstract Data Type): * List Operations:
Specifies public functionality Create
Hides implementation detail Insert object
from users Delete object
Allows us to improve/replace Find object
implementation Replace object
Forces us to think about Size? Empty?
fundamental operations (i.e.,) .
Usually sequential access

the interface) separately "
from the implementation (not random access)

* A Java interface corresponds
nicely to an ADT

A Simple List Interface

public interface List {
public void insert(Object element);
public void delete(Object element);
public boolean contains(Object element);
public int sizeQ);

* Methods are specified, but no implementation

List Data Structures

* Can use an array » Can use a sequence of linked
= Need to specify array size cells
= Inserts & Deletes require = We'll focus on this kind of
moving elements implementation
= Must copy array (to a larger = We define a class ListCell
array) when it gets full from which we build lists

[aa -7ferlee] [[]

empty

Class ListCell E‘S‘Ce" J

datum | Object:
class ListCell {
private Object datum; next | ListCell:
private ListCell next; getDatum
public ListCell(Object d, ListCell n){ getNext
datum = d; setDatum
next = n;
} setNext
public Object getDatum() {return datum;} E—
public ListCell getNext() {return next;}
public void setDatum(Object o) {datum = o;} N
public void setNext(ListCell c) {next = c;}
X By convention,

we will not show
the instance methods
when drawing cells

6

Building a List

cllstCel]
Tz
ListCell ¢ = new ListCell(new Integer(24), null); =

To keep things simple, we will not show Integer
objects explicitly in our pictures, but only show the

value contained in them.
plListCell] —

Integer t = new Integer(24);
Integer s = new Integer(-7);
Integer e = new Integer(87);

One way to build a list with multiple cells:

ListCell p = new ListCell(t,
new ListCell(s, =
new ListCell(e,

nul));

Building a List (cont’d)

Another way:

Integer t = new Integer(24);
Integer s = new Integer(-7);
Integer e = new Integer(87);
//Can also use "autoboxing"

plListCell] 4~

ListCell p = new ListCell(e,null);
p = new ListCell(s,p); =
p = new ListCell(t,p);

Note: assignment of formp = new ListCell(s,p);
does not create a circular list!

Accessing List Elements

« Lists are sequential-access p[ListCell]
data structures.
= To access contents of cell
n in sequence, you must

access
cells 0...n-1
* Accessing data in first cell: » Writing to fields =
p.getDatum() in cells can be
« Accessing data in second done the same way
cell: = Update data in first cell:
p-getNext() -getDatum() p.setDatum(new Integer(53));
« Accessing next field in = Update data in second cell:
) p.getNext().setDatum(new
second cell: Integer(53));

.getNext() .getNext
P-getNext().gethext() = Chop off third cell:

p-getNext().setNext(null);

Access Example: Linear Search

//Scan list looking for object x, return true if found
public static boolean search(Object x, ListCell c) {
for (ListCell Ic = c; Ic != null; Ic = Ic.getNextQ)) {
if (lc.getDatum().equals(x)) return true;
b

return false;

//Here is another version. Why does this work?
public static boolean search(Object x, ListCell c) {
for (; ¢ != null; c = c.getNext()) {
if (c.getDatum().equals(x)) return true;
3

return false;

A Recursive Version

public static boolean search(Object x, ListCell c) {
if (c == null) return false;
if (c.getDatum().equals(x)) return true;
return search(x, c.getNext());

3

public static boolean search(Object x, ListCell c) {
return ¢ !'= null &&
(c.getDatum().equals(x) || search(x, c.getNext())):

1

Recursion on Lists

* Recursion can be done on lists
= Similar to recursion on integers

e Almost always
= Base case: empty list

= Recursive case: Assume you can solve problem on (smaller)
list obtained by eliminating first cell...

* Many list operations can be implemented very simply
by using this idea
= Although some operations are easier to implement using
iteration

Recursive Search

* Base case: empty list
= return false

* Recursive case: non-empty list
= if data in first cell equals object x, return true
= else return result of doing linear search on rest of list

Execution of Recursive Program

public static boolean search(Object x, ListCell c) {
if (c == null) return false;
if (c.getDatum().equals(x)) return true;
return search(x, c.getNext());

3

rv|_false

rv|_false

rv| false

rv| false

Iteration is Sometimes Better

 Given a list, create a new list with elements in reverse order
« Intuition: think of reversing a pile of coins

public static ListCell reverse(ListCell c) {
ListCell rev = null;
for (G ¢ '= null; c = c.getNext()) {
rev = new ListCell(c.getDatum(), rev);
¥
return rev;

¥

* Itis not obvious how to write this simply using a recursive style

List with Header

* Some authors prefer to have a List class that is
distinct from ListCell class.

* The List object is like a head element that always
exists even if list itself is empty.

class List {
protected ListCell head; head)
public List(ListCell c) {
head = c;

public ListCell getHead()

public void setHead(ListCell c)

Variations on List with Header

* Header can also head 7\,,‘77\7
—

keep other info
= Reference to last

cellof list S
head
= Number of tail [J——

elements in list

= Search/insertion/
deletion as
instance methods head

17

Special Cases to Worry About

* Empty list
= add
= find
= delete
* Front of list
= insert
* End of list
= find
= delete
e Lists with just one element

Example: Delete from a List

* Delete first occurrence of x from list ¢
= Recursive delete
= lterative delete
* Intuitive idea of recursive code
= If list is empty, return null
= If first element of c is x, return rest of list ¢
= Otherwise, return list consisting of
+ First element of ¢, and
+ List that results from deleting x from rest of list ¢

//recursive delete

public static ListCell delete(Object x, ListCell c) {
if (c == null) return null;
if (c.getDatum().equals(x)) return c.getNext();
c.setNext(delete(x, c.getNext()));
return c;

Iterative delete

head:
* Two steps:
= Locate cell that is the

predecessor of cell to be P <— current
deleted (i.e., the cell
containing X)

+ Keep two cursors, scout <«— scout

and current <—current

scout is always one cell

ahead of current

Stop when scout finds cell «~— scout

containing x, or falls off end

of list

= If scout finds cell, update next
field of current cell to splice
out object x from list —

* Note: Need special case for x
in first cell

.

.

delete 36 from list 2

Iterative Code for Delete

public void delete (Object x) {
if (head == null) return;
if (head.getDatum().equals(x)) { //x in first cell?
head = head.getNext();
return;
¥
ListCell current = head;
ListCell scout = head.getNext();
while ((scout != null) && !scout.getDatum().equals(x)) {
current = scout;
scout = scout.getNext();
3
if (scout != null) current.setNext(scout.getNext());
return;

21

Doubly-Linked Lists

* In some applications, it is convenient to have a
ListCell that has references to both its predecessor
and its successor in the list.

class DLLCell {
private Object datum;
private DLLCell next;
private DLLCell prev;

Doubly linked vs. Singly linked

* Advantages of doubly-linked lists over singly-linked
lists

= some things are easier — e.g., reversing a doubly-linked list
can be done simply by swapping the previous and next fields
of each cell

= don't need the scout to delete

» Disadvantages

= doubly-linked lists require more heap space than singly-
linked lists

= insert and delete take more time

23

Tree Overview

* Tree: recursive data structure /(@\
(similar to list)
= Each cell may have two or more o 9 @

successors (or children))/
= Each cell has at most one
predecessor (or parent) e e o a
+ Distinguished cell called root has
no parent

= All cells reachable from root

* Binary tree: tree in which each ® /@
cell can have at most two 9
children: a left child and a right 6
child o @

Not a tree List-like tree

General tree Binary tree

@

24

