
1

Lists & Trees

Lecture 6
CS211 – Spring 2007

2

List Overview
Arrays

Random access :)
Fixed size: cannot grow on demand after creation : (

Characteristics of some applications
Do not need random access
Require a data structure that can grow and shrink dynamically to
accommodate different amounts of data

Lists satisfy these requirements

Common operations
List creation
Accessing elements in a list
Inserting elements into a list
Deleting elements from a list

3

List Operations

An ADT (Abstract Data Type):
Specifies public functionality
Hides implementation detail
from users
Allows us to improve/replace
implementation
Forces us to think about
fundamental operations (i.e.,
the interface) separately
from the implementation

List Operations:
Create
Insert object
Delete object
Find object
Replace object
Size? Empty?
Usually sequential access
(not random access)

A Java interface corresponds
nicely to an ADT

4

A Simple List Interface

Methods are specified, but no implementation

public interface List {

public void insert(Object element);

public void delete(Object element);

public boolean contains(Object element);

public int size();

}

5

List Data Structures

Can use an array
Need to specify array size
Inserts & Deletes require
moving elements
Must copy array (to a larger
array) when it gets full

Can use a sequence of linked
cells

We’ll focus on this kind of
implementation
We define a class ListCell
from which we build lists

24 -7 87 78

empty

24

-7

87

78

•

6

Class ListCell

class ListCell {
private Object datum;
private ListCell next;

public ListCell(Object d, ListCell n){
datum = d;
next = n;

}
public Object getDatum() {return datum;}
public ListCell getNext() {return next;}
public void setDatum(Object o) {datum = o;}
public void setNext(ListCell c) {next = c;}

}

datum Object:

next ListCell:

getDatum

getNext

setDatum

setNext

By convention,
we will not show
the instance methods
when drawing cells

ListCell

7

Building a List

ListCell c = new ListCell(new Integer(24), null);
24

24

–7

87

Integer t = new Integer(24);
Integer s = new Integer(-7);
Integer e = new Integer(87);

ListCell p = new ListCell(t,
new ListCell(s,

new ListCell(e,
null)));

One way to build a list with multiple cells:

p ListCell:

c ListCell:

Heap

To keep things simple, we will not show Integer
objects explicitly in our pictures, but only show the
value contained in them.

8

Building a List (cont’d)

24

-7

87

Integer t = new Integer(24);
Integer s = new Integer(-7);
Integer e = new Integer(87);
//Can also use "autoboxing"

ListCell p = new ListCell(e,null);
p = new ListCell(s,p);
p = new ListCell(t,p);

p ListCell:

HeapAnother way:

Note: assignment of form p = new ListCell(s,p);
does not create a circular list!

9

Accessing List Elements

Lists are sequential-access
data structures.

To access contents of cell
n in sequence, you must
access
cells 0...n-1

Accessing data in first cell:
p.getDatum()

Accessing data in second
cell:
p.getNext().getDatum()

Accessing next field in
second cell:
p.getNext().getNext()

Writing to fields
in cells can be
done the same way

Update data in first cell:
p.setDatum(new Integer(53));

Update data in second cell:
p.getNext().setDatum(new
Integer(53));

Chop off third cell:
p.getNext().setNext(null);

24

-7

87

p ListCell:

Heap

10

Access Example: Linear Search

//Here is another version. Why does this work?
public static boolean search(Object x, ListCell c) {

for (; c != null; c = c.getNext()) {
if (c.getDatum().equals(x)) return true;

}
return false;

}

//Scan list looking for object x, return true if found
public static boolean search(Object x, ListCell c) {

for (ListCell lc = c; lc != null; lc = lc.getNext()) {
if (lc.getDatum().equals(x)) return true;

}
return false;

}

11

A Recursive Version

public static boolean search(Object x, ListCell c) {
if (c == null) return false;
if (c.getDatum().equals(x)) return true;
return search(x, c.getNext());

}

public static boolean search(Object x, ListCell c) {
return c != null &&

(c.getDatum().equals(x) || search(x, c.getNext()));
}

12

Recursion on Lists

Recursion can be done on lists
Similar to recursion on integers

Almost always
Base case: empty list
Recursive case: Assume you can solve problem on (smaller)
list obtained by eliminating first cell…

Many list operations can be implemented very simply
by using this idea

Although some operations are easier to implement using
iteration

13

Base case: empty list
return false

Recursive case: non-empty list
if data in first cell equals object x, return true
else return result of doing linear search on rest of list

Recursive Search

14

Execution of Recursive Program
public static boolean search(Object x, ListCell c) {

if (c == null) return false;
if (c.getDatum().equals(x)) return true;
return search(x, c.getNext());

}

24

-7

87

Heaprv
c
x
rv
c
x

rv
c
x

rv
c
x 36

false

false

false

false

15

Iteration is Sometimes Better

Given a list, create a new list with elements in reverse order
Intuition: think of reversing a pile of coins

public static ListCell reverse(ListCell c) {
ListCell rev = null;
for (; c != null; c = c.getNext()) {

rev = new ListCell(c.getDatum(), rev);
}
return rev;

}

It is not obvious how to write this simply using a recursive style

16

List with Header

Some authors prefer to have a List class that is
distinct from ListCell class.
The List object is like a head element that always
exists even if list itself is empty.
class List {

protected ListCell head;
public List(ListCell c) {

head = c;
}
public ListCell getHead()
………
public void setHead(ListCell c)
………

}

24

-7

87

Heap

head
List

17

Variations on List with Header

Header can also
keep other info

Reference to last
cell of list

Number of
elements in list

Search/insertion/
deletion as
instance methods
…

24

-7

87

Heap

head
List

List

head
tail

head
List

tail
size 3

18

Special Cases to Worry About

Empty list
add
find
delete

Front of list
insert

End of list
find
delete

Lists with just one element

19

Example: Delete from a List
Delete first occurrence of x from list c

Recursive delete
Iterative delete

Intuitive idea of recursive code
If list is empty, return null
If first element of c is x, return rest of list c
Otherwise, return list consisting of

First element of c, and
List that results from deleting x from rest of list c

//recursive delete
public static ListCell delete(Object x, ListCell c) {
if (c == null) return null;
if (c.getDatum().equals(x)) return c.getNext();
c.setNext(delete(x, c.getNext()));
return c;

} 20

Iterative delete

Two steps:
Locate cell that is the
predecessor of cell to be
deleted (i.e., the cell
containing x)

Keep two cursors, scout
and current
scout is always one cell
ahead of current
Stop when scout finds cell
containing x, or falls off end
of list

If scout finds cell, update next
field of current cell to splice
out object x from list

Note: Need special case for x
in first cell

-7

24

87

p List:

36

current

scout
current

scout

delete 36 from list

:head: ListCell:

21

Iterative Code for Delete

public void delete (Object x) {
if (head == null) return;
if (head.getDatum().equals(x)) { //x in first cell?

head = head.getNext();
return;

}
ListCell current = head;
ListCell scout = head.getNext();
while ((scout != null) && !scout.getDatum().equals(x)) {

current = scout;
scout = scout.getNext();

}
if (scout != null) current.setNext(scout.getNext());
return;

}

22

Doubly-Linked Lists

In some applications, it is convenient to have a
ListCell that has references to both its predecessor
and its successor in the list.

6 45 8 -9
next

prev

class DLLCell {
private Object datum;
private DLLCell next;
private DLLCell prev;
…

}

23

Doubly- Linked vs. Singly- Linked

Advantages of doubly-linked lists over singly-linked
lists

some things are easier – e.g., reversing a doubly-linked list
can be done simply by swapping the previous and next fields
of each cell
don't need the scout to delete

Disadvantages
doubly-linked lists require more heap space than singly-
linked lists
insert and delete take more time

24

Tree Overview

Tree: recursive data structure
(similar to list)

Each cell may have two or more
successors (or children)
Each cell has at most one
predecessor (or parent)

Distinguished cell called root has
no parent

All cells reachable from root
Binary tree: tree in which each
cell can have at most two
children: a left child and a right
child

5

4

7 8 9

2

5

4

7 8

2

5

4

7 8

5

6

8

General tree Binary tree

Not a tree List-like tree

