
1

Grammars & Parsing

Lecture 4
CS211 – Spring 2007

2

Java Tips
Declare fields and methods
public if they are to be visible
outside the class; helper methods
and private data should be
declared private
Constants that will never be
changed should be declared
final

Public classes should appear in a
file of the same name
Two kinds of boolean operators:

e1 & e2: evaluate both and
compute their conjunction
e1 && e2: evaluate e1; don’t
evaluate e2 unless necessary

instead of
if (s.equals("")) {

f = true;
} else {

f = false;
}

write
f = s.equals("");

instead of
if (s.equals("")) {

f = a;
} else {

f = b;
}

write
f = s.equals("")? a : b;

3

Application of Recursion

So far, we have discussed recursion on integers
Factorial, fibonacci, combinations, an

Let us now consider a new application that shows off
the full power of recursion: parsing

Parsing has numerous applications: compilers, data
retrieval, data mining,…

4

Motivation

The cat ate the rat.
The cat ate the rat slowly.
The small cat ate the big rat slowly.
The small cat ate the big rat on the

mat slowly.
The small cat that sat in the hat ate

the big rat on the mat slowly.
The small cat that sat in the hat ate

the big rat on the mat slowly,
then got sick.

…

Not all sequences of words are
legal sentences

The ate cat rat the
How many legal sentences are
there?
How many legal programs are
there?
Are all Java programs that
compile legal programs?
How do we know what programs
are legal?

http://java.sun.com/docs/books/jls/third_edition/html/syntax.html

5

A Grammar

Sentence → Noun Verb Noun
Noun → boys
Noun → girls
Noun → bunnies
Verb → like
Verb → see

Our sample grammar has these
rules:

A Sentence can be a Noun
followed by a Verb followed by a
Noun
A Noun can be ‘boys’ or ‘girls’ or
‘bunnies’
A Verb can be ‘like’ or ‘see’

Grammar: set of rules for generating
sentences in a language
Examples of Sentence:

boys see bunnies
bunnies like girls
…

White space between words does
not matter
The words boys, girls, bunnies, like,
see are called tokens or terminals
The words Sentence, Noun, Verb
are called nonterminals
This is a very boring grammar
because the set of Sentences is
finite (exactly 18 sentences)

6

A Recursive Grammar
Sentence → Sentence and Sentence
Sentence → Sentence or Sentence
Sentence → Noun Verb Noun
Noun → boys
Noun → girls
Noun → bunnies
Verb → like
Verb → see

This grammar is more interesting
than the last one because the set of
Sentences is infinite

Examples of Sentences in this
language:

boys like girls
boys like girls and girls like
bunnies
boys like girls and girls like
bunnies and girls like bunnies
boys like girls and girls like
bunnies and girls like bunnies
and girls like bunnies
………

What makes this set infinite?
Answer:

Recursive definition of Sentence

7

Detour

What if we want to add a period at the end of every sentence?

Sentence → Sentence and Sentence .
Sentence → Sentence or Sentence .
Sentence → Noun Verb Noun .
Noun → …

Does this work?
No! This produces sentences like:

girls like boys . and boys like bunnies . .
Sentence Sentence

Sentence
8

Sentences with Periods

TopLevelSentence → Sentence .
Sentence → Sentence and Sentence
Sentence → Sentence or Sentence
Sentence → Noun Verb Noun
Noun → boys
Noun → girls
Noun → bunnies
Verb → like
Verb → see

Add a new rule that adds
a period only at the end of
the sentence.

The tokens here are the 7
words plus the period (.)

9

Grammar for Simple Expressions
E → integer
E → (E + E)

Simple expressions:
An E can be an integer.
An E can be ‘(’ followed by an E
followed by ‘+’ followed by an E
followed by ‘)’

Set of expressions defined by
this grammar is a recursively-
defined set

Is language finite or infinite?
Do recursive grammars always
yield infinite languages?

Here are some legal
expressions:

2
(3 + 34)
((4+23) + 89)
((89 + 23) + (23 + (34+12)))

Here are some illegal
expressions:

(3
3 + 4

The tokens in this grammar are
(, +,), and any integer

10

Parsing

Grammars can be used in two
ways

A grammar defines a
language (i.e., the set of
properly structured
sentences)
A grammar can be used to
parse a sentence (thus,
checking if the sentence is in
the language)

To parse a sentence is to
build a parse tree

This is much like
diagramming a sentence

Example: Show that
((4+23) + 89)
is a valid expression E by
building a parse tree

E

(E)E+

89
(E)E+

4 23

11

Recursive Descent Parsing
Idea: Use the grammar to design
a recursive program to check if a
sentence is in the language

To parse an expression E, for
instance

We look for each terminal (i.e.,
each token)
Each nonterminal (e.g., E) can
handle itself by using a recursive
call

The grammar tells how to write
the program!

Pseudo Code:

boolean parseE():
if first token is an integer: return true;
if first token is “(”:

parseE();
Make sure there is a “+” token;
parseE();
Make sure there is a “)” token;
return true;

return false;

12

Java Code for Parsing E

public static boolean parseE(Scanner scanner) {
if (scanner.hasNextInt()) {

scanner.nextInt();
return true;

}
return check(scanner, "(") &&

parseE(scanner) &&
check(scanner, "+") &&
parseE(scanner) &&
check(scanner, ")");

}

13

Detour: Java Exceptions

Parsing does two things:
It returns useful data (a parse tree)
It checks for validity (i.e., is the input a valid sentence?)

How should we respond to invalid input?

Exceptions allow us to do this without complicating our
code unnecessarily

14

Exceptions

Exceptions are usually thrown to indicate that
something bad has happened

IOException on failure to open or read a file
ClassCastException if attempted to cast an object to a
type that is not a supertype of the dynamic type of the object
NullPointerException if tried to dereference null
ArrayIndexOutOfBoundsException if tried to access an
array element at index i < 0 or ≥ the length of the array

In our case (parsing), we need to indicate invalid
syntax

15

Handling Exceptions

Exceptions can be caught by the program using a
try-catch block
catch clauses are called exception handlers

Integer x = null;
try {

x = (Integer)y;
System.out.println(x.intValue());

} catch (ClassCastException e) {
System.out.println("y was not an Integer");

} catch (NullPointerException e) {
System.out.println("y was null");

}

16

Defining Your Own Exceptions

An exception is an object (like everything else in Java)
You can define your own exceptions and throw them

class MyOwnException extends Exception {}

...

if (input == null) {
throw new MyOwnException();

}

17

Declaring Exceptions

In general, any exception that could be thrown must be either
declared in the method header or caught

Note: throws means “can throw”, not “does throw”
Subtypes of RuntimeException do not have to be declared
(e.g., NullPointerException, ClassCastException)

These represent exceptions that can occur during “normal operation
of the Java Virtual Machine”

void foo(int input) throws MyOwnException {
if (input == null) {
throw new MyOwnException();

}
...

}

18

How Exceptions are Handled
If the exception is thrown from inside the try clause of a try-
catch block with a handler for that exception (or a superclass of
the exception), then that handler is executed

Otherwise, the method terminates abruptly and control is passed
back to the calling method

If the calling method can handle the exception (i.e., if the call
occurred within a try-catch block with a handler for that
exception) then that handler is executed

Otherwise, the calling method terminates abruptly, etc.

If none of the calling methods handle the exception, the entire
program terminates with an error message

19

Using a Parser to Generate Code

We can modify the parser so
that it generates stack code to
evaluate arithmetic
expressions:

2 PUSH 2
STOP

(2 + 3) PUSH 2
PUSH 3
ADD
STOP

Goal: Method parseE should
return a string containing stack
code for expression it has
parsed

Method parseE can generate
code in a recursive way:

For integer i, it returns string
“PUSH ” + i + “\n”
For (E1 + E2),

Recursive calls for E1 and E2
return code strings c1 and c2,
respectively
For (E1 + E2), return
c1 + c2 + “ADD\n”

Top-level method should tack on
a STOP command after code
received from parseE

20

Does Recursive Descent Always Work?

There are some grammars
that cannot be used as the
basis for recursive descent

A trivial example (causes
infinite recursion):

S → b
S → Sa

Can rewrite grammar
S → b
S → bA
A → a
A → aA

For some constructs,
recursive descent is hard to
use

Can use a more powerful
parsing technique (there are
several, but not in this course)

21

Syntactic Ambiguity
Sometimes a sentence has
more than one parse tree

S → A | aaxB
A → x | aAb
B → b | bB

The string aaxbb can be parsed
in two ways

This kind of ambiguity
sometimes shows up in
programming languages

if E1 then if E2 then S1 else S2

Which then does the else go with?

This ambiguity actually affects
the program’s meaning

How do we resolve this?
Provide an extra non-grammar
rule (e.g., the else goes with
the closest if)
Modify the language (e.g., an
if-statement must end with a
‘fi’)
Operator precedence (e.g.
1 + 2 * 3 should always be
parsed as 1 + (2 * 3), not
(1 + 2) * 3
Other methods (e.g., Python
uses amount of indentation)

22

Conclusion

Recursion is a very powerful technique for writing
compact programs that do complex things
Common mistakes:

Incorrect or missing base cases
Subproblems must be simpler than top-level problem

Try to write description of recursive algorithm and
reason about base cases before writing code

Why?
Syntactic junk such as type declarations… can create mental
fog that obscures the underlying recursive algorithm

Best to separate the logic of the program from coding details

23

Exercises

Think about recursive calls made to parse and
generate code for simple expressions

2
(2 + 3)
((2 + 45) + (34 + -9))

Derive an expression for the total number of calls
made to parseE for parsing an expression

Hint: think inductively

Derive an expression for the maximum number of
recursive calls that are active at any time during the
parsing of an expression (i.e. max depth of call stack)

24

Exercises

Write a grammar and recursive program for palindromes
mom
dad
i prefer pi
race car
murder for a jar of red rum
sex at noon taxes

Write a grammar and recursive program for strings AnBn

AB
AABB
AAAAAAABBBBBBB

Write a grammar and recursive program for Java identifiers
<letter> [<letter> or <digit>]0…N

j27, but not 2j7

