Grammars & Parsing

Lecture 4
CS211 - Spring 2007

Java Tips

« Declare fields and methods
public if they are to be visible
outside the class; helper methods
and private data should be
declared private

« Constants that will never be
changed should be declared
final

 Public classes should appear in a
file of the same name

* Two kinds of boolean operators:

= el & e2: evaluate both and
compute their conjunction

= el && e2:evaluate el; don't
evaluate e2 unless necessary

« instead of
if (s.equals(™)) {
f = true;
} else {
f = false;
3

write
f = s.equals(");

« instead of
if (s.equals(C"™)) {
T = a;
} else {
f = b;
T

write
f = s.equals(""")? a : b;

Application of Recursion
» So far, we have discussed recursion on integers
= Factorial, fibonacci, combinations, a"

 Let us now consider a new application that shows off
the full power of recursion: parsing

* Parsing has numerous applications: compilers, data
retrieval, data mining,...

Motivation

The cat ate the rat.

The cat ate the rat slowly.

The small cat ate the big rat slowly.

The small cat ate the big rat on the
mat slowly.

The small cat that sat in the hat ate
the big rat on the mat slowly.

The small cat that sat in the hat ate
the big rat on the mat slowly,
then got sick.

Not all sequences of words are
legal sentences

= The ate cat rat the
How many legal sentences are
there?
How many legal programs are
there?
Are all Java programs that
compile legal programs?
How do we know what programs
are legal?

http://java.sun.com/docs/books/jls/third_edition/html/syntax.html

A Grammar

Sentence — Noun Verb Noun « Grammar: set of rules for generating
Noun — sentences in a language

Noun > * Examples of Sentence:
Noun - = boys see bunnies
Verb - = bunnies like girls
Verb >

« White space between words does
* Our sample grammar has these

A Recursive Grammar

Sentence — Sentence Sentence
Sentence — Sentence or Sentence

Sentence — Noun Verb Noun

Noun -
Noun >
Noun -
Verb —
Verb -

* This grammar is more interesting

* Examples of Sentences in this
language:

= boys like girls

= boys like girls and girls like
bunnies

= boys like girls and girls like
bunnies and girls like bunnies

= boys like girls and girls like
bunnies and girls like bunnies
and girls like bunnies

rules: not matter
= A Sentence can be a Noun * The words
;\?Ilowed by a Verb followed by a are called tokens or terminals
joun
= A Noun can be ‘boys’ or ‘girls’ o * The words Sentence, Noun, Verb
‘bunnies’ are called nonterminals

= A Verb can be ‘like’ or ‘see’

* This is a very boring grammar
because the set of Sentences is
finite (exactly 18 sentences)

than the last one because the set of

P * What makes this set infinite?
Sentences is infinite

Answer:
= Recursive definition of Sentence

Detour

* What if we want to add a period at the end of every sentence?
Sentence — Sentence Sentence

Sentence — Sentence or Sentence

Sentence — Noun Verb Noun

Noun -

* Does this work?
* No! This produces sentences like:
girls like boys . and boys like bunnies . .

Sentence Sentence

Sentence

Sentences with Periods

TopLevelSentence — Sentence ¢ Add a new rule that adds

Sentence — Sentence Sentence @ period only at the end of
the sentence.

Sentence — Sentence or Sentence

Sentence — Noun Verb Noun
* The tokens here are the 7

Noun - words plus the period (.)
Noun -
Noun -
Verb -
Verb -

Grammar for Simple Expressions

E — integer * Here are some legal
E—>(E+E) expressions:
=2

» (3+34)
= ((4+23) +89)
(89 +23) + (23 + (34+12)))

* Simple expressions:
= An E can be an integer.
= An E can be ‘(' followed by an E
followed by '+ followed by an E

followed by)
« Here are some illegal
« Set of expressions defined by expressions:
this grammar is a recursively- =3
defined set = 3+4

= Is language finite or infinite?

= Do recursive grammars always * The tokens in this grammar are
yield infinite languages? (, +), and any integer

Parsing
e Grammars can be used intwo ¢ Example: Show that
ways ((4+23) + 89)
= A grammar defines a is a valid expression E by
language (i.e., the set of building a parse tree
properly structured
sentences) c

A grammar can be used to
parse a sentence (thus,
checking if the sentence is in
the language)

» To parse a sentence is to (E + E)
build a parse tree
= This is much like
diagramming a sentence 4 23

Recursive Descent Parsing

* Idea: Use the grammar to design
a recursive program to check if a

sentence is in the language
boolean parseE():

if first token is an integer: return true;
if first token is “(":
parseE();

« To parse an expression E, for
instance

= We look for each terminal (i.e.,

each token)
parseE();

= Each nonterminal (e.g., E) can K here is a ")’ token:
handle itself by using a recursive Make sure there is a)" token;
call return true;

return false;

* The grammar tells how to write
the program!

1

Make sure there is a “+" token;

Java Code for Parsing E

public static boolean parseE(Scanner scanner) {
if (scanner_hasNextInt()) {
scanner.nextint();
return true;
}
return check(scanner, (") &&
parseE(scanner) &&
check(scanner, "+") &&
parseE(scanner) &&
check(scanner, ")");

Detour: Java Exceptions

* Parsing does two things:
= |t returns useful data (a parse tree)
= It checks for validity (i.e., is the input a valid sentence?)

* How should we respond to invalid input?

* Exceptions allow us to do this without complicating our
code unnecessarily

Exceptions

» Exceptions are usually thrown to indicate that
something bad has happened

= [0Exception on failure to open or read a file

= ClassCastException if attempted to cast an object to a
type that is not a supertype of the dynamic type of the object

= Nul lPointerException if tried to dereference null

= ArrayIndexOutOfBoundsException if tried to access an
array element at index i < 0 or > the length of the array

* In our case (parsing), we need to indicate invalid
syntax

Handling Exceptions

* Exceptions can be caught by the program using a
try-catch block

 catch clauses are called exception handlers

Integer x = null;

try {
x = (Integer)y;
System.out.printIn(x.intvalue());

} catch (ClassCastException e) {
System.out.printIn(’'y was not an Integer');

} catch (NullPointerException e) {
System.out.printIn(y was null™);

3

Defining Your Own Exceptions

* An exception is an object (like everything else in Java)
= You can define your own exceptions and throw them

class MyOwnException extends Exception {}

if (input == null) {
throw new MyOwnException();

3

Declaring Exceptions

« In general, any exception that could be thrown must be either
declared in the method header or caught

void foo(int input) throws MyOwnException {
it (input == null) {
throw new MyOwnException();

¥
o

* Note: throws means “can throw”, not “does throw”

* Subtypes of RuntimeException do not have to be declared
(e.g., Nul lPointerException, ClassCastException)

= These represent exceptions that can occur during “normal operation
of the Java Virtual Machine”

17

How Exceptions are Handled

.

If the exception is thrown from inside the try clause of a try-
catch block with a handler for that exception (or a superclass of
the exception), then that handler is executed
= Otherwise, the method terminates abruptly and control is passed
back to the calling method

If the calling method can handle the exception (i.e., if the call
occurred within a try-catch block with a handler for that
exception) then that handler is executed

= Otherwise, the calling method terminates abruptly, etc.

If none of the calling methods handle the exception, the entire
program terminates with an error message

Using a Parser to Generate Code

* We can modify the parser so
that it generates stack code to
evaluate arithmetic
expressions:

* Method parseE can generate

code in a recursive way:
= For integer i, it returns string

Does Recursive Descent Always Work?

* There are some grammars
that cannot be used as the
basis for recursive descent

= A trivial example (causes
infinite recursion):
*+S—>b

* For some constructs,
recursive descent is hard to
use

= Can use a more powerful
parsing technique (there are
several, but not in this course)

2 PUSH 2 = For (E1 + E2),

STOP + Recursive calls for E1 and E2
return code strings c1 and
respectively

(2+3) PUSH 2 « For (E1 + E2), retum

PUSH 3

ADD = Top-level method should tack on

STOP a command after code

* Goal: Method parseE should received from parseE

return a string containing stack
code for expression it has

+S—Sa

« Can rewrite grammar
*+S—>b
*+S 5 bA
*A->a
+A—aA

20

parsed
19
Syntactic Ambiguity
* Sometimes a sentence has * This ambiguity actually affects
more than one parse tree the program’s meaning
S —» A|aaxB
‘B\” ; || Z’;b * How do we resolve this?
N
. = Provide an extra non-grammar
* The string aaxbb can be parsed rule (e.g., the else goegs with
in two ways i’

the closest if)
= Modify the language (e.g., an
* This kind of ambiguity if-statement must end with a

sometimes shows up in fir)

programming languages = Operator precedence (e.g.
1+ 2 * 3 should always be
parsed as 1 + (2 * 3), not

Conclusion

* Recursion is a very powerful technique for writing
compact programs that do complex things
e Common mistakes:
= Incorrect or missing base cases
= Subproblems must be simpler than top-level problem
* Try to write description of recursive algorithm and
reason about base cases before writing code
= Why?

+ Syntactic junk such as type declarations... can create mental
fog that obscures the underlying recursive algorithm

= Best to separate the logic of the program from coding details

22

if E1 then if E2 then S1 else S2 (1+2)*3
= Other methods (e.g., Python
Which then does the else go with? uses amount of indentation)
21
Exercises

* Think about recursive calls made to parse and
generate code for simple expressions
.2
*@2+3)
* ((2+45) + (34 +-9))

« Derive an expression for the total number of calls
made to parseE for parsing an expression
= Hint: think inductively

* Derive an expression for the maximum number of
recursive calls that are active at any time during the
parsing of an expression (i.e. max depth of call stack)

23

Exercises
* Write a grammar and recursive program for palindromes
= mom
= dad
= i prefer pi
= race car

= murder for a jar of red rum
= sex at noon taxes
* Write a grammar and recursive program for strings A"B"
= AB
= AABB
= AAAAAAABBBBBBB
* Write a grammar and recursive program for Java identifiers
= <letter> [<letter> or <digit>]0--N
= j27, but not 2j7

24

