Recursion

Lecture 3
CS211 - Spring 2007

Announcements

* For extra Java help
= Lots of consulting/office-
hours available
+ General Java help is more
easily available in week
before assignment is due
= Can set up individual
meetings with TAs via
email

* Check soon that you are
in CMS

* Academic Integrity Note

= We treat Al violations seriously
= The Al hearing process is
unpleasant
+ Please help us avoid this
process by maintaining
Academic Integrity
= We test all pairs of submitted
programming assignments for
similarity
+ Similarities are caught even if
variables are renamed

= Report problems to Kelly
(Administrative asst)

Recursion Overview

¢ Recursion is a powerful technique for specifying
functions, sets, and programs

* Example recursively-defined functions and programs
= factorial
= combinations
= exponentiation (raising to an integer power)

* Example recursively-defined sets
= grammars
= expressions
= data structures (lists, trees, ...)

The Factorial Function (n!)

e Define n! = n:(n-1)-(n-2)---3-2:1
=EgQ,3!=321=6
* By convention, 0! =1
* The function int — int that gives n! on input n is called
the
* n! is the number of permutations of n distinct objects
= There is just one permutation of one object. 1!=1
= There are two permutations of two objects: 2! =2
12 21
= There are six permutations of three objects: 3! =6
123 132 213 231 312 321

elfn>0, nl=n:(n-1)!

Permutations of (&9 (7 il D

Permutations of
non-orange blocks

Oe®. -O099
[Jy iy]
A=] el

88 Seeo
- - @ Each permutation of the three non-

orange blocks gives four permutations

- @ - when the orange block is included

Total number = 4.6 = 24 = 4!

A Recursive Program

ol=1 Execution of fact(4)
n!'=n-(n-1),, n>0 fact(4)
fact(3)
static int fact(int n) {
if (n == 0) return 1; fact(2)
else return n*fact(n-1);

} fact(1)

fact(0)

General Approach to Writing
Recursive Functions

1. Tryto find a parameter, say n, such that the solution
for n can be obtained by combining solutions to the
same problem using smaller values of n (e.g., (n-1)!)

2. Find base case(s) — small values of n for which you
can just write down the solution (e.g., 0! = 1)

3. Verify that, for any valid value of n, applying the
reduction of step 1 repeatedly will ultimately hit one
of the base cases

The Fibonacci Function

* Mathematical definition:
fib(0) =0 two base cases!
fib(1) =1 :>
fib(n) = fib(n — 1) + fib(n — 2), n>2

N
;\
I

e

* Fibonacci sequence: 0, 1,1, 2, 3,5, 8,13, ...

1

static int fib(int n) { Fibonacci (Leonardo
if (n == 0) return O; Pisano) 1170-1240?
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2); Statue in Pisa, Italy
} Giovanni Paganucci
1863

Recursive Execution

static int fib(int n) {

if (n == 0) return 0;

else if (n == 1) return 1;

else return fib(n-1) + fib(n-2);
H

Execution of fib(4): fib(4)

fib(3) fib(2)
N T
fib2) fib(l) fib(l) fib(0)

O

fib(1) fib(0)

Combinations
(a.k.a. Binomial Coefficients)
* How many ways can you choose r items from
a set of n distinct elements? ()

(i) = number of 2-element subsets of {A,B,C,D,E}

2-element subsets containing A: (i)
{A.B}, {A,C}, {AD}, {AE}

2-element subsets not containing A:
{B,C}.{B,D}.{B,E}.{C,D}{C,E}.{D,E}

¢ Therefore, (2) = (i') + (3)

Combinations

(1) = ("H)+(7), n>rs0
(:) =1 n n!
((n)) =1 Can also show that (I’) = W
(8) Pascal’'s 1
(é) (i) triangle 1 1

& @) = 1 2 1
e @) 6 @) 13 3 1
G) (D G G @ 146 41

Binomial Coefficients

* Combinations are also called binomial coefficients
because they appear as coefficients in the expansion
of the binomial power (x+y)":

ey = (o) +(3)xmty +(5)xm2y2 + -+ () y"

=2 (Nxy

Combinations Have Two Base Cases

("H+(1) , n>rs0

— Two base cases

* Coming up with right base cases can be tricky!
* General idea:
= Determine argument values for which recursive case does

not apply
= Introduce a base case for each one of these

Recursive Program for Combinations

("+() , n>rs0

1

~ A~~~

o535 =3

~— — —
1

static int combs(int n, int r) { //assume n>=r>=0
if (r == 0 || r == n) return 1; //base cases
else return combs(n-1,r) + combs(n-1,r-1);

3

Positive Integer Powers

*a"=a-a-a-a(ntimes)

 Alternate description:
= a0=1
= gl =g.gn

static int power(int a, int n) {
if (n == 0) return 1;
else return a*power(a,n-1);

}

A Smarter Version

* Power computation:
. a0=1
= If nis nonzero and even, a" = (a"?)2
= If nis odd, a" = a-(a"?)?
+ Java note: If x and y are integers, “x/y” returns the integer part of the
quotient

* Example:
as = a,(as/z)z = a,(az)z = aA((az/z)z)z = a,(az)z
Note: this requires 3 multiplications rather than 5!

¢ What if n were larger?
= Savings would be more significant

* This is much faster than the straightforward computation
= Straightforward computation: n multiplications
= Smarter computation: log(n) muiltiplications

Smarter Version in Java

en=0:a%=1
* n nonzero and even: a" = (a"?)?
¢ n nonzero and odd: a" = a-(a"?)?

parameters

local variable

4 N
static int power(int a, int n) {
if (n == 0) return 1;
int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower;
return halfPower*halfPower*a;

¥

*The method has two parameters and a local variable
*Why aren’t these overwritten on recursive calls?

Implementation of Recursive Methods

* Key idea:
= Use a stack to remember parameters and local
variables across recursive calls
= Each method invocation gets its own stack frame

* A stack frame contains storage for
= Local variables of method
= Parameters of method
= Return info (return address and return value)
= Perhaps other bookkeeping info

t

stack grows

top element

2nd element

3rd element

bottom
element

Stacks

pointer

top-of-stack

* Like a stack of plates

* You can push data on top or pop
data off the top in a LIFO (last-in-
first-out) fashion

* A queue is similar, except it is
FIFO (first-in-first-out)

Stack Frame

* A new stack frame is
pushed with each
recursive call

* The stack frame is
popped when the
method returns

= Leaving a return value
(if there is one) on top
of the stack

local variables

a stack frame

parameters

return info

20

Example: power(2, 5)

retval =) |
(hP=)? (hP=) I
(m=)1 (=)l
(@a=)2 (@a=)2
return info return info retval =) 7
(hP=)? (hP=)? (hP=)? (hP=)2
0=)2 m=)2 (m=)2 (n=)2
(a=)2 (@=)2 (a=)2 (a=)2
return info return info return info return info m
mP=)? | [(P=)? (hP-)? (hP =) ? (WP=)? | | (WP=)4
(n=)5 m=)5 (n=)5 m=)5 (n=)5 n=)5
(a=)2 (a=)2 @=)2 @=)2 @=)2 (a=)2
return info| | return info return info return info return info| | return info

N 7~

NG

How Do We Keep Track?

At any point in execution,
many invocations of power
may be in existence
= Many stack frames (all for
power) may be in Stack
= Thus there may be several
different versions of the
variables a and n

How does processor know
which location is relevant at a
given point in the
computation?

* Answer:
Frame Base Register
= When a method is invoked,
a frame is created for that
method invocation, and FBR
is set to point to that frame
= When the invocation returns,
FBR is restored to what it
was before the invocation
* How does machine know
what value to restore in the
FBR?
= This is part of the return info
in the stack frame

22

(retval =) 32
21
FBR
« Computational activity takes place
only in the topmost (most recently (hP=)?
(m=)1
pushed) stack frame @o)2
return info
(hP=)? (hP=)?
(n=)2 m=)2
(@a=)2 (@a=)2
return info return info
(hP=)? (hP=)?
m=)5 (n=)5
(a=)2 (a=)2
return info return info

FBR

23

Conclusion

* Recursion is a convenient and powerful way to define

functions

* Problems that seem insurmountable can often be
solved in a “divide-and-conquer” fashion:
= Reduce a big problem to smaller problems of the same kind,

solve the smaller problems

= Recombine the solutions to smaller problems to form solution

for big problem

 Important application (next lecture): parsing

24

