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Recursion

Lecture 3
CS211 – Spring 2007
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Announcements

For extra Java help
Lots of consulting/office-
hours available

General Java help is more 
easily available in week 
before assignment is due

Can set up individual 
meetings with TAs via 
email

Check soon that you are 
in CMS

Report problems to Kelly 
(Administrative asst)

Academic Integrity Note
We treat AI violations seriously
The AI hearing process is 
unpleasant

Please help us avoid this 
process by maintaining 
Academic Integrity

We test all pairs of submitted 
programming assignments for 
similarity

Similarities are caught even if 
variables are renamed
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Recursion Overview

Recursion is a powerful technique for specifying 
functions, sets, and programs

Example recursively-defined functions and programs
factorial 
combinations
exponentiation (raising to an integer power)

Example recursively-defined sets
grammars 
expressions
data structures (lists, trees, ...)
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The Factorial Function  (n!)

Define n! = n·(n−1)·(n−2)···3·2·1     read: “n factorial”
E.g., 3! = 3·2·1 = 6

By convention, 0! = 1
The function int → int that gives n! on input n is called
the factorial function
n! is the number of permutations of n distinct objects

There is just one permutation of one object.  1! = 1
There are two permutations of two objects:  2! = 2

1 2    2 1
There are six permutations of three objects:  3! = 6

1 2 3     1 3 2     2 1 3     2 3 1     3 1 2     3 2 1

If n > 0,  n! = n·(n − 1)!
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Permutations of
Permutations of 
non-orange blocks

Each permutation of the three non-
orange blocks gives four permutations 
when the orange block is included

Total number = 4·6 = 24 = 4!
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A Recursive Program

static int fact(int n) {
if (n = = 0) return 1;
else return n*fact(n-1);

}

0! = 1

n! = n·(n−1)!,  n > 0

1

1

2
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Execution of fact(4)

fact(1)

fact(4)

fact(3)

fact(0)

fact(2)

24
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General Approach to Writing
Recursive Functions

1. Try to find a parameter, say n, such that the solution 
for n can be obtained by combining solutions to the 
same problem using smaller values of n (e.g., (n-1)!)

2. Find base case(s) – small values of n for which you 
can just write down the solution (e.g., 0! = 1)

3. Verify that, for any valid value of n, applying the 
reduction of step 1 repeatedly will ultimately hit one 
of the base cases    
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The Fibonacci Function

Mathematical definition:
fib(0) = 0
fib(1) = 1
fib(n) = fib(n − 1) + fib(n − 2),  n ≥ 2

Fibonacci sequence:  0, 1, 1, 2, 3, 5, 8, 13, …

static int fib(int n) {
if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

} 

two base cases!

Fibonacci (Leonardo 
Pisano) 1170−1240?

Statue in Pisa, Italy
Giovanni Paganucci

1863
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Recursive Execution
static int fib(int n) {

if (n == 0) return 0;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

} 

fib(4)

fib(3) fib(2)

fib(1) fib(0)

fib(2) fib(1) fib(1) fib(0)

Execution of fib(4):
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Combinations 
(a.k.a. Binomial Coefficients)

How many ways can you choose r items from 
a set of n distinct elements?   (  ) “n choose r”

( ) = number of 2-element subsets of {A,B,C,D,E}

2-element subsets containing A: 
{A,B}, {A,C}, {A,D}, {A,E}

2-element subsets not containing A: 
{B,C},{B,D},{B,E},{C,D},{C,E},{D,E}

Therefore,        = +

(  )4
1

(  )4
2

(  )4
1 (  )4

2(  )5
2

n
r

5
2
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Combinations

= +         ,  n > r > 0

= 1
= 1

(  )n
r (    )n−1

r (    )n−1
r−1

(  )n
n

(  )n
0

(  )0
0

(  )1
1(  )1

0

(  )2
2(  )2

1(  )2
0

(  )3
3(  )3

2(  )3
1(  )3

0

(  )4
4(  )4

3(  )4
2(  )4

1(  )4
0

1

1   1

1  2    1

1   3    3     1

1   4   6    4    1

=

Pascal’s
triangle

Can also show that =(  )n
r

n!
r!(n−r)!
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(x + y)n =        xn +       xn−1y +       xn−2y2 + ··· +        yn

=  Σ xn−iyi(  )n
i

(  )n
n(  )n

0 (  )n
1 (  )n

2

n

i = 0

Binomial Coefficients

Combinations are also called binomial coefficients
because they appear as coefficients in the expansion 
of the binomial power (x+y)n :
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Combinations Have Two Base Cases

Coming up with right base cases can be tricky!
General idea:

Determine argument values for which recursive case does 
not apply
Introduce a base case for each one of these

Two base cases

= +         ,  n > r > 0

= 1
= 1

(  )n
r (    )n−1

r (    )n−1
r−1

(  )n
n

(  )n
0

14

Recursive Program for Combinations

static int combs(int n, int r) { //assume n>=r>=0
if (r == 0 || r == n) return 1; //base cases
else return combs(n-1,r) + combs(n-1,r-1);

}

= +         ,  n > r > 0

= 1
= 1

(  )n
r (    )n−1

r (    )n−1
r−1

(  )n
n

(  )n
0
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Positive Integer Powers

an = a·a·a···a (n times)

Alternate description:
a0 = 1
an+1 = a·an

static int power(int a, int n) {
if (n == 0) return 1;
else return a*power(a,n-1);

}
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A Smarter Version
Power computation:

a0 = 1
If n is nonzero and even, an = (an/2)2

If n is odd, an = a·(an/2)2

Java note: If x and y are integers, “x/y” returns the integer part of the 
quotient

Example: 
a5 =  a·(a5/2)2 =  a·(a2)2 =  a·((a2/2)2)2   =  a·(a2)2

Note: this requires 3 multiplications rather than 5!

What if n were larger? 
Savings would be more significant

This is much faster than the straightforward computation
Straightforward computation:  n multiplications
Smarter computation:  log(n) multiplications
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Smarter Version in Java
n = 0:  a0 = 1
n nonzero and even:  an = (an/2)2

n nonzero and odd:  an = a·(an/2)2

static int power(int a, int n) {
if (n == 0) return 1;
int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower;
return halfPower*halfPower*a;

}

parameters
local variable

The method has two parameters and a local variable
Why aren’t these overwritten on recursive calls? 18

Key idea: 
Use a stack to remember parameters and local 
variables across recursive calls
Each method invocation gets its own stack frame

A stack frame contains storage for
Local variables of method
Parameters of method
Return info (return address and return value)
Perhaps other bookkeeping info

Implementation of Recursive Methods
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Like a stack of plates
You can push data on top or pop
data off the top in a LIFO (last-in-
first-out) fashion
A queue is similar, except it is 
FIFO (first-in-first-out)

Stacks

top element
2nd element
3rd element

...

bottom 
element

...

top-of-stack
pointer

stack grows
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Stack Frame

A new stack frame is 
pushed with each 
recursive call

The stack frame is 
popped when the 
method returns

Leaving a return value 
(if there is one) on top 
of the stack

a stack frame

return info

local variables

parameters
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Example: power(2, 5)

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 2

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 2

(hP = ) ?

return info

(a = ) 2
(n = ) 1

(hP = ) ?

return info

(a = ) 2
(n = ) 5
(hP = ) 4

return info

(a = ) 2
(n = ) 5
(hP = ) ?

return info

(a = ) 2
(n = ) 2
(hP = ) 2

return info

(a = ) 2
(n = ) 5
(hP = ) ?

return info

(a = ) 2
(n = ) 2
(hP = ) ?

return info

(a = ) 2
(n = ) 1
(hP = ) 1

(retval = ) 1

(retval = ) 2

(retval = ) 4

(retval = ) 32
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How Do We Keep Track?

At any point in execution, 
many invocations of power
may be in existence

Many stack frames (all for 
power) may be in Stack
Thus there may be several 
different versions of the 
variables a and n

How does processor know 
which location is relevant at a 
given point in the 
computation?

Answer: 
Frame Base Register

When a method is invoked, 
a frame is created for that 
method invocation, and FBR
is set to point to that frame
When the invocation returns, 
FBR is restored to what it 
was before the invocation

How does machine know 
what value to restore in the 
FBR?

This is part of the return info 
in the stack frame

23

FBR

Computational activity takes place 
only in the topmost (most recently 
pushed) stack frame

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 2

(hP = ) ?

return info

(a = ) 2
(n = ) 5

(hP = ) ?

return info

(a = ) 2
(n = ) 2

(hP = ) ?

return info

(a = ) 2
(n = ) 1

(hP = ) ?

FBR FBR FBR

old FBR

old FBR

old FBR

old FBRold FBR old FBR
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Conclusion

Recursion is a convenient and powerful way to define 
functions

Problems that seem insurmountable can often be 
solved in a “divide-and-conquer” fashion:

Reduce a big problem to smaller problems of the same kind, 
solve the smaller problems
Recombine the solutions to smaller problems to form solution 
for big problem

Important application (next lecture): parsing


