
1

Java Review

Lecture 2
CS211 Spring 2007

Announcements

Java Bootcamp
too late for the live sessions!
but tutorial & solutions still available online

Assignment 1 has been posted and is due
Wednesday, February 7, 11:59pm

Check that you are in CMS
Report any CMS problems to your Section TA (email is fine)

It’s really a good idea to start on A1 and check CMS
this week (well before the assignment is due)

More Announcements

Available help
Consulting starts soon--watch web page for announcement
Instructor & TA office hours effective as soon as posted

Check daily for announcements
www.cs.cornell.edu/courses/cs211

Register for ENGRD 211 or COM S 211

Sections start next week
Section notes will be useful for A1

Today

A short, biased history of programming languages

Review of some Java/OOP concepts

Common Java pitfalls

Debugging and experimentation

Machine Language

Used with the earliest
electronic computers (1940s)

Machines use vacuum tubes
instead of transistors

Programs are entered by
setting switches or reading
punch cards
All instructions are numbers

Example code
0110 0001 0000 0110
Add Reg1 6

An idea for improvement
Use “words” instead of numbers
Result: Assembly Language

Assembly Language

Idea: Use a program (an
assembler) to convert
assembly language into
machine code
Early assemblers were some
of the most complicated code
of the time (1950s)

Example code
ADD R1 6
MOV R1 COST
SET R1 0
JMP TOP

Typically, an assembler used
2 passes

Idea for improvement
Let’s make it easier for
humans by designing a high-
level computer language
Result: high-level languages

2

High-Level Language

Idea: Use a program (a
compiler or an interpreter) to
convert high-level code into
machine code

Pro
Easier for humans to write,
read, and maintain code

Con
The resulting program will
never be as efficient as good
assembly-code

Waste of memory
Waste of time

The whole concept was initially
controversial

FORTRAN (mathematical
FORmula TRANslating system)
was designed with efficiency very
much in mind

FORTRAN

Initial version developed in
1957 by IBM

Example code
C SUM OF SQUARES

ISUM = 0
DO 100 I=1,10
ISUM = ISUM + I*I

100 CONTINUE

FORTRAN introduced many
high-level language constructs
still in use today

Variables & assignment
Loops
Conditionals
Subroutines

ALGOL

ALGOL
= ALGOrithmic Language
Developed by an international
committee
First version in 1958 (not
widely used)
Second version in 1960
(widely used)

Sample code
comment Sum of squares
begin

integer i, sum;
for i:=1 until 10 do

sum := sum + i*i;
end

ALGOL 60 included recursion
Pro: easier to design clear,
succinct algorithms
Con: too hard to implement;
too inefficient

COBOL

COBOL =
COmmon Business Oriented
Language

Developed by the US
government (about 1960)

Design was greatly influenced
by Grace Hopper

Goal: Programs should look
like English

Idea was that anyone should
be able to read and
understand a COBOL program

COBOL included the idea of
records (a single data
structure with multiple fields,
each field holding a value)

Simula & Smalltalk

These languages introduced
and popularized Object
Oriented Programming (OOP)

Simula was developed in
Norway as a language for
simulation in the 60s
Smalltalk was developed at
Xerox PARC in the 70s

These languages included
Classes
Objects
Subclasses & Inheritance

Java – 1995

Java includes

Assignment statements, loops,
conditionals from FORTRAN (but
syntax from C)

Recursion from ALGOL

Fields from COBOL

OOP from Simula & Smalltalk
JavaTM and logo © Sun Microsystems, Inc.

3

class Thing {
int val;
Thing next;
Thing nonzero() {
if (val != 0) return this;
return next.nonzero();

}
}

A class defines how to make objects
fields: variables that are part of object
methods: named code operating on object

Classes

Thing x = new Thing();
x.next = x;

fields

method

this refers to
current object

x

nonzero
val

next
0

null

instance of
Thing

Constructors

New instances of a class are created by calling a constructor
Default constructor initializes all fields to default values (0 or null)

new Thing(5);
class Thing {

int val;
Thing next;
Thing(int v) {

val = v+1;
next = null;

}
}

null
val
next

6

Constructor

Static Fields and Methods

A class can have fields and methods of its own
Declare with keyword static
Do not need an instance of the class to use them
Only one copy – access using class name

class Thing {
int val;
static int numCreated = 0;
Thing(int v) {

val = v;
numCreated++;

}
static boolean anyExist() {

return numCreated != 0;
}

}

can’t use this in a
static method

if (Thing.anyExist()) {
int n = Thing.numCreated;

}

Static vs Instance Example
class Widget {

static int nextSerialNumber = 10000;
int serialNumber;

Widget() { serialNumber = nextSerialNumber++; }

Widget(int sn) { serialNumber = sn; }

public static void main(String[] args) {
Widget a = new Widget();
Widget b = new Widget();
Widget c = new Widget();
Widget d = new Widget(42);
System.out.println(a.serialNumber);
System.out.println(b.serialNumber);
System.out.println(c.serialNumber);
System.out.println(d.serialNumber);

}
}

boolean findVal(int y) {
Thing here = this;
while (here != null && here.val != y) {

here = here.next;
}
return here;

}

Parameters and Local Variables

Methods have 0 or more parameters/arguments (i.e., inputs to
the method code)
Can declare local variables too
Both disappear when method returns

formal parameter

local
variable

x.findVal(23);

actual
parameter

class Thing {
int val;

boolean setVal(int v) {
int val = v;

}
}

A Common Pitfall
local variable shadows field

you would like to set the instance field val = v
but you have declared a new local variable val
assignment has no effect on the field val

4

class Thing {
int val;

boolean setVal(int v) {
int val = v;

}
}

A Common Pitfall
local variable shadows field

you would like to set the instance field val = v
but you have declared a new local variable val
assignment has no effect on the field val

Programs

A program is a collection of classes
Including built-in Java classes

A running program does computation using instances
of those classes
Program starts with a main method, declared as:

public static void main (String[] args) {
...body...

} Method must be named main

Parameters passed to program on command line

A class method; don’t need an object to call it

Can be called from anywhere

No return value

Names
Refer to fields & methods in own class by (unqualified) name

serialNumber
nextSerialNumber

Refer to static fields & methods in another class using name of
the class

Widget.nextSerialNumber

Refer to instance fields & methods in another class using name
of the object

a.serialNumber

Example
System.out.println(a.serialNumber)

out is a static field in class System
The value of System.out is an instance of a class that has an
instance method println(int)

If an object has to refer to itself, use this

Overloading of Methods

A class can have several methods of the same name
But all methods must have different signatures
The signature of a method is its name plus types of its
parameters

Example: String.valueOf(...) in Java API
There are 9 of them:

valueOf(boolean);
valueOf(int);
valueOf(long);
...

Parameter types are part of the method’s signature

Primitive Types vs Reference Types

Primitive types
int, short, long, float,
byte, char, boolean,
double

Efficiently implemented by
storing directly into variable
Take a single word or 2 words
of storage
Not considered an Object by
Java: “unboxed”

Reference types
Objects and arrays

String, int[], HashSet
Usually require more memory
Can have special value null

Can compare null with ==, !=
Generates
NullPointerException
if you try to dereference it

x true
x

== vs equals()
== tests whether variables hold
identical values

Works fine for primitive types

For reference types (e.g.,
String), you usually want to
use equals()

== means “they are the same
object”
Usually not what you want!

To compare object contents,
define an equals() method
boolean equals(Object x);

Two different strings with
value "hello"
x = "hello";
y = "hello";
x == y?

x y

"hello" "hello"

5

"xy" == "xy" "xy".equals("xy")

"xy" == "x" + "y" "xy".equals("x" + "y")

"xy" == new String("xy") "xy".equals(new String("xy"))

== vs equals() Arrays

Arrays are reference types
Array elements can be
reference types or primitive
types

E.g., int[] or String[]
If a is an array, a.length is
its length
Its elements are a[0], a[1],
..., a[a.length - 1]

The length is fixed for any
one array

a
0 1 2 3

String[] a = new String[4];

null

a.length = 4

Arrays

Arrays are reference types
Array elements can be
reference types or primitive
types

E.g., int[] or String[]
If a is an array, a.length is
its length
Its elements are a[0], a[1],
..., a[a.length - 1]

The length is fixed for any
one array

a
0 1 2 3

String[] a = new String[4];
a[2] = "hello"

null

"hello"

a.length = 4

The Class Hierarchy

Classes form a hierarchy
Class hierarchy is a tree

Object is at the root (top)
E.g., String and
StringBuilder are
subclasses of Object

The hierarchy is a tree
Each class has exactly one
superclass (except Object,
which has no superclass)
Each class can have zero or
more subclasses

Can use a class anywhere
superclass is expected

Within a class, methods and
fields of its superclass are
available

use super for access to
overridden methods

Object

String StringBuilder

Array vs ArrayList vs HashMap

Three extremely useful
constructs (see Java API)
Array

Storage is allocated when
array created; cannot
change

ArrayList (in java.util)
An “extensible” array
Can append or insert
elements, access ith
element, reset to 0 length

HashMap (in java.util)
Save data indexed by keys
Can lookup data by its key
Can get an iteration of the
keys or the values

HashMap Example

Create a HashMap of numbers, using the names of the numbers
as keys:

HashMap numbers = new HashMap();
numbers.put("one", new Integer(1));
numbers.put("two", new Integer(2));
numbers.put("three", new Integer(3));

To retrieve a number:

Integer n = (Integer)numbers.get("two");
if (n != null) System.out.println("two = " + n);

returns null if the Hashmap does not contain the key
Can use numbers.containsKey(key) to check this

6

Generics (Java 1.5)

Old
HashMap h = new HashMap();
h.put("one",new Integer(1));
Integer s = (Integer)h.get("one");

New
HashMap<String, Integer> h =

new HashMap<String,Integer>();
h.put("one", 1);
int s = h.get("one");

No longer necessary to do a class cast each time you
“box/unbox” an int

Another new feature:
Automatic boxing/unboxing

Experimentation and Debugging

Don't be afraid to experiment
if you don't know how things
work

An IDE (Interactive
Development Environment;
e.g., DrJava or Eclipse)
makes this easy

Debugging
Do not just make random
changes, hoping something
will work
Think about what could
cause the observed behavior
Isolate the bug using print
statements combined with
binary search
An IDE makes this easy by
providing a Debugging Mode

Can step through the
program while watching
chosen variables

