Java Review

Lecture 2
CS211 Spring 2007

Announcements

* Java Bootcamp
= too late for the live sessions!
= but tutorial & solutions still available online

* Assignment 1 has been posted and is due
Wednesday, February 7, 11:59pm

* Check that you are in CMS
= Report any CMS problems to your Section TA (email is fine)

e It's really a good idea to start on A1 and check CMS
this week (well before the assignment is due)

More Announcements
 Available help

= Consulting starts soon--watch web page for announcement
= |nstructor & TA office hours effective as soon as posted

* Check daily for announcements
www.cs.cornell.edu/courses/cs211

* Register for ENGRD 211 or COM S 211

* Sections start next week
= Section notes will be useful for A1

Today

* A short, biased history of programming languages
* Review of some Java/OOP concepts
* Common Java pitfalls

* Debugging and experimentation

Machine Language

* Used with the earliest * Example code

electronic computers (1940s) 0110 0001 0000 0110
= Machines use vacuum tubes
instead of transistors

* Programs are entered by
setting switches or reading
punch cards

« All instructions are numbers

* An idea for improvement
= Use “words” instead of numbers
= Result: Assembly Language

Assembly Language

* Idea: Use a program (an * Example code
assembler) to convert ADD R1 6
assembly language into MOV R1 COST
machine code SET R1 O

* Early assemblers were some JMP TOP
of the most complicated code
of the time (1950s)

= Typically, an assembler used
2 passes

* |dea for improvement
= Let's make it easier for
humans by designing a high-
level computer language
= Result: high-level languages

High-Level Language

* |dea: Use a program (a * The whole concept was initially
compiler or an interpreter) to controversial
convert high-level code into = FORTRAN (mathematical
machine code FORmula TRANSslating system)

was designed with efficiency very
much in mind

*Pro
= Easier for humans to write,
read, and maintain code
*Con
= The resulting program will
never be as efficient as good
assembly-code
+ Waste of memory
+ Waste of time

FORTRAN
« Initial version developed in * Example code
1957 by IBM C SUM OF SQUARES

ISUM = 0

DO 100 I1=1,10

ISUM = ISUM + I*1
100 CONTINUE

* FORTRAN introduced many
high-level language constructs
still in use today

= Variables & assignment
= Loops

= Conditionals

= Subroutines

ALGOL

* Sample code
l comment Sum of squares
begin
integer i, sum;
for i:=1 until 10 do
| sum = sum + i*i;
* ALGOL end
= ALGOrithmic Language
« Developed by an international ~ * ALGOL 60 included recursion

committee = Pro: easier to design clear,
« First version in 1958 (not succinct algorithms
widely used) = Con: too hard to implement;

» Second version in 1960 oo inefficient

(widely used)

COBOL
*COBOL = * COBOL included the idea of
COmmon Business Oriented records (a single data
Language structure with multiple fields,

each field holding a value)

* Developed by the US
government (about 1960)
= Design was greatly influenced
by Grace Hopper

* Goal: Programs should look
like English
= |dea was that anyone should
be able to read and
understand a COBOL program

Simula & Smalltalk

* These languages introduced
and popularized Object
Oriented Programming (OOP)

= Simula was developed in
Norway as a language for
simulation in the 60s

= Smalltalk was developed at
Xerox PARC in the 70s

* These languages included
= Classes
= Objects
= Subclasses & Inheritance -

Java — 1995
*Java includes

= Assignment statements, loops,
conditionals from FORTRAN (but

syntax from C) C_——-')
e
"R ion from ALGOL — ilaene A
ecursion from

= Fields from COBOL Java‘

= OOP from Simula & Smalltalk

Javar and 1ogo © Sun Microsystems, Inc.

Classes

* A class defines how to make objects
= fields: variables that are part of object
= methods: named code operating on object

‘Thing X = new Thing(Q);
| x-next = x;

class Thing {
int val;
Thing next; le
Thing nonzero() {

if (val '= 0) return this; instance of
return next.nonzero(); Thing
H this refers to nonzero
¥ current object val
next| null |

Constructors

New instances of a class are created by calling a constructor

Default constructor initializes all fields to default values (0 or nul 1)

class Thing {
Thing next;
FThing(int v) {]
i val = v+1;
; next = null;

val 6
next| null

H Constructor

Static Fields and Methods

* A class can have fields and methods of its own
= Declare with keyword static
= Do not need an instance of the class to use them
= Only one copy — access using class name

class Thing {
int val;
static int numCreated = O;

Thing(int v) { if (Thing.anyExist(Q)) {
val = v; int n = Thing.numCreated;
numCreated++; H

}

static boolean anyExist() { , .
return numCreated != 0; can.t use thisina

3 static method

b3

Static vs Instance Example

class Widget {
static int nextSerialNumber = 10000;
int serialNumber;

Widget() { serialNumber = nextSerialNumber++; }
Widget(int sn) { serialNumber = sn; }

void main(String[] args) {
new Widget();

new Widget();

new Widget();

new Widget(42);
-printin(a.serialNumber);
-printin(b.serialNumber);
-printIn(c.serialNumber);
System.out.printIn(d.serialNumber);

Parameters and Local Variables

* Methods have 0 or more parameters/arguments (i.e., inputs to
the method code)

* Can declare local variables too

* Both disappear when method returns

formal parameter

boolean findval(int y) {
Thing here = this;
while (here !'= null && here.val !=y) {
here = here.next; actual
parameter

local
variable

¥

return here;

¥ x.Findval (23);

A Common Pitfall

local variable shadows field

class Thing {
int val;

boolean setval(int v) {
int val = v;

¥

¥

= you would like to set the instance field val = v
= but you have declared a new local variable val
= assignment has no effect on the field val

A Common Pitfall

local variable shadows field

class Thing {
int val;

boolean setval(int v) {

Jrt val = v;

¥

¥

= you would like to set the instance field val = v
= but you have declared a new local variable val
= assignment has no effect on the field val

Programs

* A program is a collection of classes
= Including built-in Java classes

* A running program does computation using instances
of those classes

* Program starts with a main method, declared as:
No return value

public static void main (String[] args) {
...bady. ..

} Method must be named main
Parameters passed to program on command line

A class method; don't need an object to call it

Can be called from anywhere

Names

* Refer to fields & methods in own class by (unqualified) name
= serialNumber
= nextSerialNumber
* Refer to static fields & methods in another class using name of
the class
= Widget.nextSerialNumber
* Refer to instance fields & methods in another class using name
of the object
= a.serialNumber
* Example
= System.out.printin(a.serialNumber)
+ outis a static field in class System
+ The value of System.out is an instance of a class that has an
instance method printIn(int)
« If an object has to refer to itself, use this

Overloading of Methods

* A class can have several methods of the same name
= But all methods must have different signatures
= The signature of a method is its name plus types of its
parameters
e Example: String.valueOf(...) in Java API
= There are 9 of them:
+ valueOf(boolean);
+ valueOf(int);
+ valueOf(long);

.

= Parameter types are part of the method’s signature

Primitive Types vs Reference Types

* Primitive types Reference types
= int, short, long, float, = Objects and arrays
byte, char, boolean, + String, int[], HashSet

double = Usually require more memory
= Efficiently implemented by = Can have special value nul 1

== vs equals()

== tests whether variables hold « Two different strings with

storing directly into variable

= Take a single word or 2 words
of storage

= Not considered an Object by
Java: “unboxed”

X | true

+ Can compare null with ==, 1=
+ Generates

Nul IPointerException

if you try to dereference it

x[

identical values value "“hello"
X = "hello";
» Works fine for primitive types y = "hello";
X == y?
« For reference types (e.g.,
String), you usually want to
use equals(Q) X y

= ==means “they are the same
object”
= Usually not what you want!

* To compare object contents,
define an equals() method
boolean equals(Object x);

Arrays

Arrays are reference types

Array elements can be

reference types or primitive

types 01 2 3
= E.g, int[] or String[] a

If ais an array, a. length is

its length

Its elements are a[0], a[1],

..a[a.length - 1] nutl

The length is fixed for any

one array

String[] a = new String[4];

a.length = 4

== vs equals()
“xy".equals('xy"™)
Uxy'" == UXT o+ Yy Uxy'.equals('x" + "'y™)
"xy'" == new String('xy') xy'.equals(new String(''xy'))
Arrays

Arrays are reference types
Array elements can be
reference types or primitive
types

= E.g., int[] or String[]
If ais an array, a. length is
its length
Its elements are a[0], a[1],
.., a[a-length - 1]
The length is fixed for any
one array

.

string[] a = new String[4];
a[2] = "hello”

null

a.length = 4

The Class Hierarchy

* Classes form a hierarchy
* Class hierarchy is a tree
= Object is at the root (top) Object
= E.g, String and \

StringBuilder are Strin crinaedi lder
subclasses of Object g S gBuilde

* The hierarchy is a tree
= Each class has exactly one
superclass (except Object, o Within a class, methods and
which has no superclass) fields of its superclass are
= Each class can have zero or available
more subclasses
» Can use a class anywhere
superclass is expected

= use super for access to
overridden methods

Array vs ArraylList vs HashMap

* Three extremely useful
constructs (see Java API)
* Array
= Storage is allocated when
array created; cannot
change
e ArrayList (in java.util)
= An “extensible” array
= Can append or insert
elements, access it
element, reset to 0 length

* HashMap (in java.util)
= Save data indexed by keys
= Can lookup data by its key

= Can get an iteration of the
keys or the values

HashMap Example

* Create a HashMap of numbers, using the names of the numbers
as keys:

HashMap numbers = new HashMap(Q);
numbers.put(*one™, new Integer(1));
numbers.put(“two", new Integer(2));
numbers.put(*'three™, new Integer(3));

To retrieve a number:

Integer n (Integer)numbers.get("two™);
if (n '= null) System.out.printin(two = " + n);

« returns nul I if the Hashmap does not contain the key
= Can use numbers.containsKey(key) to check this

Generics (Java 1.5)

* Old
HashMap h = new HashMap();
h.put(*'one™,new Integer(1));
Integer s = (Integer)h.get(*'one™);
* New
HashMap h =
new HashMap O;

h.put(*one", 1);

int s =_h.get("one™); Another new feature:

Automatic boxing/unboxing

* No longer necessary to do a class cast each time you
“box/unbox” an int

Experimentation and Debugging

* Don't be afraid to experiment * Debugging

if you don't know how things = Do not just make random
work changes, hoping something
= An IDE (Interactive will work
Development Environment; = Think about what could
e.g., DrJava or Eclipse) cause the observed behavior

makes this easy

Isolate the bug using print

statements combined with

binary search

An IDE makes this easy by

providing a Debugging Mode
+ Can step through the

program while watching
chosen variables

