COM S/ENGRD 211
(“CS2117)
Spring 2007

Lecture 1: Overview
http://www.cs.cornell.edu/courses/cs211

Announcements

Did you get this lecture handout? (from now on,
posted on-line)

Assignment 1 (of 5) posted today on website,
due 2/7

Java Bootcamp, Upson B7, Tue 1/23 and Wed
1/24, 7:30-10:30pm (same content both nights)
ACSU bowling at Helen Newman lanes this
Thursday, Jan 25, 5-7pm. Free pizza. Come and
meet current members, find out more about the
organization and enjoy a few games of bowling.

Course Staff

* Instructors:

— Professor Dexter Kozen
kozen@cs.cornell.edu

— Professor David |. Schwartz
dis@cs.cornell.edu

* Administrative Assistant:

— Kelly Patwell
patwell@cs.cornell.edu

* More contact info?
— See Staff on website

Student Course Staff

Teaching Assistants:

— Lead sections (“recitations”) starting next
week

— Act as your main contact point
Consultants:

—In Upson 360, hours online
—“Front line” for answering questions
More info?

— See Staff on website

Lectures

TR 10:10-11am, Olin 155
Attendance is mandatory

ENGRD 211 or COM S 211?

— Same course! We call it CS211

— Non-engineers sign up for COM S 211

— Engineers sign up for ENGRD 211, but Engineering
college doesn’t care which you sign up for

Lecture notes will be online

We will occasionally make small last minute
changes to the notes

Readings and examples will be posted online
together with lecture notes

Sections

SEC 01 T 1220-0110P HO 320

SEC 02 T 0125-0215P UP 215

SEC 03 T 0230-0320P UP 211

SEC 04 W 1220-0110P PH 307

SEC 05 W 0125-0215P UP 109
SECH66R-6236-6326PH6-326 Canceled!
SEC 07 T 1220-0110P UP 211

SEC 08 T 0125-0215P HO 306

SEC 09 W 1220-0110P UP 211

SEC 10 W 0125-0215P OH 218

Sections

« Like lecture, attendance is mandatory

» Usually review, help on homework

* Sometimes new material

« Section numbers are different for Com S and ENGRD

« Each section will be led by a member of the teaching staff
* No permission needed to switch sections

* You may attend more than one section if you wish

CS212

* CS 212: Java Practicum
» 1 credit project course

» Substantial project

* 1 lecture per week

* Required for CS majors; recommended for
others

» Best to take 211 and 212 in the same semester

Online Resources

» Course web site
http://www.cs.cornell.edu/courses/cs211
— Watch for announcements

» Course newsgroups
cornell.class.cs211, cornell.class.cs211.talk
— Good place to ask questions (carefully)

» Textbook: Frank M. Carrano, Data Structures
and Abstractions with Java, 2nd ed., Prentice
Hall (1st edition is obsolete)

» Additional material on the Prentice Hall website

Obtaining Java

* We do not require an IDE
— But we generally use Eclipse

* See Help & Software under Java
Resources on website

* Use Java 5 (aka 1.5.0_10)

* Do not use Java 1.6!
— Still in beta

Java Help

* CS 211 assumes basic Java knowledge:

— classes, objects, fields, methods, constructors, static
and instance variables, control structures, arrays,
strings, exposure to inheritance

* Need review?

—Java Refresher/Bootcamp
« self-guided tutorial—material (including solutions)
on website (Help & Software)
« Live help in Upson B7, Tue 1/23 and Wed 1/24,
7:30-10:30pm
* Same material both days

Academic Excellence Workshops

» Two-hour labs in which students work
together in cooperative setting

» One credit S/U course based on attendance
* Time and Location TBA
« See the website for more info

Course Work

» 5 assignments involving both programming and
written answers (44%)
— We A.l. check each homework assignment
— The software is extremely accurate!

» Two prelims (15% each)

 Final exam (20%)

» Course evaluation (1%)

* Occasional quizzes in class (5%)

Assignments

Assignments may be done by teams of two
students (except for A1)

— A1 will be posted today

You may choose to do them by yourself
Finding a partner: choose your own or contact
your TA. Newsgroup may be helpful.
Monogamy encouraged

Mandatory reading: partner info and Code of
Academic Integrity on website

Course Objectives

An introduction to computer science and
software engineering
» Concepts in modern programming languages
— recursive algorithms and data structures
— data abstraction, subtyping, generic programming
— frameworks and event-driven programming
 Algorithm analysis and designing for efficiency
— asymptotic complexity, induction
» Concrete data structures and algorithms
— arrays, lists, stacks, queues, trees, hashtables, graphs
» Organizing large programs
Using Java, but not a course on Java!

Lecture Sequence

Introduction and Review

Recursion and induction

Object-oriented concepts: data abstraction,
subtyping

Data structures: Lists and trees

Grammars and parsing

Inheritance and frameworks

Algorithm analysis, Asymptotic Complexity
Searching and Sorting

More Lecture Topics

» Generic Programming
+ Data Structures

— Sequence Structures: stacks, queues, heaps,
priority queues

— Search Structures: binary search trees,
hashing

— Graphs and graph algorithms

» Graphical user interface frameworks
— Event-driven programming
— Concurrency and simple synchronization

Sam Loyd’s 8 Puzzle

Initially scrambled
configuration

e Transition
(N/S/E/W means tile moves Nonh/South/Exst/West

- Sequence of moves

TEIE]) . o .
[415]6] | = Sorted configuration
708

Goal: Given an initial configuration of tiles, find a sequence of moves
that will lead to the sorted configuration.

A particular configuration is called a state of the puzzle.

State Transition Diagram of 8-Puzzle

.
- e A
AN N| IS
a2 W /3 1412
[dsl] 1 [_17s] &
61718 E s 61718]
.‘ A '3 ‘---
S/|N .
J y
LR FINE
[i]3]s] - - aase
P ~01718

sees

State Transition Diagram: picture of adjacent states.

A state Y is adjacent to state X if Y can be reached from X in one move. 19

State Transition Diagram for a 2x2 Puzzle

Stote

_ wife' effw wile Eflw
Solutions for this state:] e ! 4
SWN I i Y SITN
1Ty 5y N
WSENWSENW Sy IN SyIN vl
- SWEWN a i i I
* W W

E E 20

Graphs

« State Transition Diagram in previous slide is an
example of a graph: a mathematical abstraction
— vertices (or nodes): (e.g., the puzzle states)

— edges (or arcs): connections between pairs of
vertices

— vertices and edges may be labeled with some
information (name, direction, weight, cost, ...)

» Other examples of graphs: airline routes,
roadmaps, . . .
— A common vocabulary for problems

21

Path Problems in Graphs

* |s there a path from node A to node B?
— Solve the 8-puzzle

* What is the shortest path from A to B?
— 8-puzzle (efficiently)
— Mapquest

» Traveling salesman problem

* Hamiltonian cycles

22

Simulating the 8-puzzle
+ What operations should puzzle objects
support?
* How do we represent states?
* How do we specify an initial state?
What algorithm do we use to solve a given
initial configuration?
What kind of GUI should we design?

* How to structure the program so it can be
understood, maintained, upgraded?

23

SaM

* SaM is a simple StAck Machine:
— Similar to the Java Virtual Machine (JVM)

—and to the machine code understood by
processor hardware

— Use it to understand how compilers work
* Download it from course homepage
» Used extensively in CS212

24

SaM’s Stack

. Note: For now, assume only
. integers can be pushed on stack.
7

E Z SaM actually allows floats,
8, _2' characters, etc. to be pushed, and it
< 4 ey tracks type of data. GUI displays
o4 |3 | SP (Stack Pointer) type (liinteger,F:float,. . .), but
ignore this for now.
Stack

Stack: an array of integers
« Stack grows when integer is "pushed" on top.
« Stack shrinks when integer is "popped" from top.
« Stack starts at address 0 and grows to larger addresses.
Stack pointer (SP):
« first "free" address in stack
« stores integer address
« initialized to 0
25

Some SaM Commands

All arithmetic/logical operations pop values from stack, perform
operation, push result, and move SP to first free address
Some commands:
PUSHIMM int
I push integer int onto top of stack
ADD
/I pops two values from top of stack
/l adds them and pushes result
SuB
/I pops two values (say top and below)
/I and pushes result of doing (below - top)
TIMES
I works like ADD
GREATER
/I Boolean values are simulated using 0/1 (false/true)
AND
/I logical AND
STOP
/I terminate execution of program

26

Demonstrate SaM Commands

4l 4w

3 318 PUSHIMM 16

27 2[7

1]z 1|2

o4 [3]se [[a]s=e

al* 4. ADD:

3= 3. *Pop 7

27 2[] « Pop -2

12 1[5 - Determine 7 + (-2)
ol ala ["27]se +Pushresult

27

Booleans and SaM

o = N W
o = P oW R

\
L3]ee 4]

Booleans are simulated in SaM with integers:
« False — 0
« True — any int except 0 (usually 1)

[2]se

GREATER:
- Pop two values (V,,, and V) from stack (V).
- S0, Vigp = 7 and Vg, = -2.
= If Vigiow > Viop PUsh 1; else push 0.

- In example, we would push 0. 28

SaM Programs

+ Example 1:

PUSHIMM 5

PUSHIMM 4

PUSHIMM 3

PUSHIMM 2

TIMES

TIMES

TIMES

STOP // should leave 120 on top of stack
« Example 2:

PUSHIMM 5

PUSHIMM 4

GREATER

STOP //should leave 1 on top of stack

29

SaM Simulator

What operations must SaM objects support?
How do we represent the internal state of SaM?
How do we load programs from a file?

How do we write code to interpret each of the
opcodes?

How do we translate a high-level language like
Java into SaM code?

30

Why you need CS 211

You will be able to design and write moderately
large, well-structured programs to simulate such
systems.
Computer systems are complex. Need CS to make
them work; can’t just hack it
* Selected software disasters:

» CTAS air traffic control system 1991-present

* Ariane 5 ex-rocket

» Denver airport automated baggage handling

31

Why you need CS211, cont'd

Fun and intellectually interesting: cool math ideas
meet engineering and make a difference.

» Recursion, induction, logic, discrete structures, ...
Crucial to any engineering or science career

» Good programmers are >10x more productive

« Leverages knowledge in other fields, makes new

possibilities
* Where will you be in 10 years?

32

Why you need CS211, cont’d

Real systems are large, complex, buggy, bloated, unmaintainable,
incomprehensible.

Year Operating System Millions of lines of code*
1993 Windows NT 3.1 6

1994 Windows NT 3.5 10

1996 Windows NT 4.0 16

2000 Windows 2000 29

2001 Windows XP 40

2005 Windows Vista Beta2 50
Commercial software typically has 20 to 30 bugs for every 1,000
lines of code’

*source: Wikipedia
tsource: CMU CyLab Sustainable Computing Consortium

33

Moore’s Law

¥ = 0330

¥ = 0121485

=

MPS

Years since 1971
Figure 5: Processor performance in millions of instructions per second (MIPS) for
Intel processors, 1971-1995,

From Lives and death of Moore’s Law, llkka Tuomi, 2002
34

Grandmother’s Law

* Brain takes about 0.1 second to recognize
your grandmother

— About 1 second to add two integers (e.g.
3+4=T7)

— About 10 seconds to think/write statement of
code

* Your brain is not getting any faster!

35

Motivation

» Computers double in speed every 18 months
— Software doubles in size every M Years
— Data doubles in size every N Years
— Your brain never doubles in speed
— But we do get smarter, and can work in teams
» Computer science is increasingly important
— Better algorithms
— Better data structures
— Better programming languages
— Better understanding of what is (and is not) possible

36

