
1

1

COM S/ENGRD 211
(“CS211”)

Spring 2007
Lecture 1: Overview

http://www.cs.cornell.edu/courses/cs211

2

Announcements
• Did you get this lecture handout? (from now on,

posted on-line)
• Assignment 1 (of 5) posted today on website,

due 2/7
• Java Bootcamp, Upson B7, Tue 1/23 and Wed

1/24, 7:30-10:30pm (same content both nights)
• ACSU bowling at Helen Newman lanes this

Thursday, Jan 25, 5-7pm. Free pizza. Come and
meet current members, find out more about the
organization and enjoy a few games of bowling.

3

Course Staff
• Instructors:

– Professor Dexter Kozen
kozen@cs.cornell.edu

– Professor David I. Schwartz
dis@cs.cornell.edu

• Administrative Assistant:
– Kelly Patwell

patwell@cs.cornell.edu
• More contact info?

– See Staff on website

4

Student Course Staff

• Teaching Assistants:
– Lead sections (“recitations”) starting next

week
– Act as your main contact point

• Consultants:
– In Upson 360, hours online
– “Front line” for answering questions

• More info?
– See Staff on website

5

Lectures
• TR 10:10-11am, Olin 155
• Attendance is mandatory
• ENGRD 211 or COM S 211?

– Same course! We call it CS211
– Non-engineers sign up for COM S 211
– Engineers sign up for ENGRD 211, but Engineering

college doesn’t care which you sign up for
• Lecture notes will be online
• We will occasionally make small last minute

changes to the notes
• Readings and examples will be posted online

together with lecture notes
6

Sections

SEC 01 T 1220-0110P HO 320
SEC 02 T 0125-0215P UP 215
SEC 03 T 0230-0320P UP 211
SEC 04 W 1220-0110P PH 307
SEC 05 W 0125-0215P UP 109
SEC 06 R 0230-0320P HO 320 Canceled!
SEC 07 T 1220-0110P UP 211
SEC 08 T 0125-0215P HO 306
SEC 09 W 1220-0110P UP 211
SEC 10 W 0125-0215P OH 218

2

7

Sections

• Like lecture, attendance is mandatory
• Usually review, help on homework
• Sometimes new material
• Section numbers are different for Com S and ENGRD
• Each section will be led by a member of the teaching staff
• No permission needed to switch sections
• You may attend more than one section if you wish

8

CS212

• CS 212: Java Practicum
• 1 credit project course
• Substantial project
• 1 lecture per week
• Required for CS majors; recommended for

others
• Best to take 211 and 212 in the same semester

9

Online Resources
• Course web site

http://www.cs.cornell.edu/courses/cs211
– Watch for announcements

• Course newsgroups
cornell.class.cs211, cornell.class.cs211.talk
– Good place to ask questions (carefully)

• Textbook: Frank M. Carrano, Data Structures
and Abstractions with Java, 2nd ed., Prentice
Hall (1st edition is obsolete)

• Additional material on the Prentice Hall website

10

Obtaining Java

• We do not require an IDE
– But we generally use Eclipse

• See Help & Software under Java
Resources on website

• Use Java 5 (aka 1.5.0_10)
• Do not use Java 1.6!

– Still in beta

11

Java Help
• CS 211 assumes basic Java knowledge:

– classes, objects, fields, methods, constructors, static
and instance variables, control structures, arrays,
strings, exposure to inheritance

• Need review?
– Java Refresher/Bootcamp

• self-guided tutorial—material (including solutions)
on website (Help & Software)

• Live help in Upson B7, Tue 1/23 and Wed 1/24,
7:30-10:30pm

• Same material both days

12

Academic Excellence Workshops

• Two-hour labs in which students work
together in cooperative setting

• One credit S/U course based on attendance
• Time and Location TBA
• See the website for more info

3

13

Course Work

• 5 assignments involving both programming and
written answers (44%)
– We A.I. check each homework assignment
– The software is extremely accurate!

• Two prelims (15% each)
• Final exam (20%)
• Course evaluation (1%)
• Occasional quizzes in class (5%)

14

Assignments

• Assignments may be done by teams of two
students (except for A1)
– A1 will be posted today

• You may choose to do them by yourself
• Finding a partner: choose your own or contact

your TA. Newsgroup may be helpful.
• Monogamy encouraged
• Mandatory reading: partner info and Code of

Academic Integrity on website

15

Course Objectives
An introduction to computer science and

software engineering
• Concepts in modern programming languages

– recursive algorithms and data structures
– data abstraction, subtyping, generic programming
– frameworks and event-driven programming

• Algorithm analysis and designing for efficiency
– asymptotic complexity, induction

• Concrete data structures and algorithms
– arrays, lists, stacks, queues, trees, hashtables, graphs

• Organizing large programs
Using Java, but not a course on Java! 16

Lecture Sequence
• Introduction and Review
• Recursion and induction
• Object-oriented concepts: data abstraction,

subtyping
• Data structures: Lists and trees
• Grammars and parsing
• Inheritance and frameworks
• Algorithm analysis, Asymptotic Complexity
• Searching and Sorting

17

More Lecture Topics

• Generic Programming
• Data Structures

– Sequence Structures: stacks, queues, heaps,
priority queues

– Search Structures: binary search trees,
hashing

– Graphs and graph algorithms
• Graphical user interface frameworks

– Event-driven programming
– Concurrency and simple synchronization

18

Sam Loyd’s 8 Puzzle

Goal: Given an initial configuration of tiles, find a sequence of moves
that will lead to the sorted configuration.

A particular configuration is called a state of the puzzle.

4

19

State Transition Diagram of 8-Puzzle

State Transition Diagram: picture of adjacent states.
A state Y is adjacent to state X if Y can be reached from X in one move. 20

State Transition Diagram for a 2x2 Puzzle

21

Graphs
• State Transition Diagram in previous slide is an

example of a graph: a mathematical abstraction
– vertices (or nodes): (e.g., the puzzle states)
– edges (or arcs): connections between pairs of

vertices
– vertices and edges may be labeled with some

information (name, direction, weight, cost, …)
• Other examples of graphs: airline routes,

roadmaps, . . .
– A common vocabulary for problems

22

Path Problems in Graphs

• Is there a path from node A to node B?
– Solve the 8-puzzle

• What is the shortest path from A to B?
– 8-puzzle (efficiently)
– Mapquest

• Traveling salesman problem
• Hamiltonian cycles

23

Simulating the 8-puzzle
• What operations should puzzle objects

support?
• How do we represent states?
• How do we specify an initial state?
• What algorithm do we use to solve a given

initial configuration?
• What kind of GUI should we design?
• How to structure the program so it can be

understood, maintained, upgraded?

24

SaM

• SaM is a simple StAck Machine:
– Similar to the Java Virtual Machine (JVM)
– and to the machine code understood by

processor hardware
– Use it to understand how compilers work

• Download it from course homepage
• Used extensively in CS212

5

25

SaM’s Stack

Stack: an array of integers
• Stack grows when integer is "pushed" on top.
• Stack shrinks when integer is "popped" from top.
• Stack starts at address 0 and grows to larger addresses.

Stack pointer (SP):
• first "free" address in stack
• stores integer address
• initialized to 0

Note: For now, assume only
integers can be pushed on stack.
SaM actually allows floats,
characters, etc. to be pushed, and it
tracks type of data. GUI displays
type (I:integer,F:float,. . .), but
ignore this for now.

26

Some SaM Commands
• All arithmetic/logical operations pop values from stack, perform

operation, push result, and move SP to first free address
• Some commands:

PUSHIMM int
// push integer int onto top of stack

ADD
// pops two values from top of stack
// adds them and pushes result

SUB
// pops two values (say top and below)
// and pushes result of doing (below - top)

TIMES
// works like ADD

GREATER
// Boolean values are simulated using 0/1 (false/true)

AND
// logical AND

STOP
// terminate execution of program

27

Demonstrate SaM Commands

PUSHIMM 16

ADD:
• Pop 7
• Pop -2
• Determine 7 + (-2)
• Push result

28

Booleans and SaM

Booleans are simulated in SaM with integers:
• False → 0
• True → any int except 0 (usually 1)

GREATER:
- Pop two values (Vtop and Vbelow) from stack (V).
- So, Vtop = 7 and Vbelow = -2.
- If Vbelow > Vtop push 1; else push 0.
- In example, we would push 0.

29

SaM Programs
• Example 1:

PUSHIMM 5
PUSHIMM 4
PUSHIMM 3
PUSHIMM 2
TIMES
TIMES
TIMES
STOP // should leave 120 on top of stack

• Example 2:
PUSHIMM 5
PUSHIMM 4
GREATER
STOP //should leave 1 on top of stack

30

SaM Simulator
• What operations must SaM objects support?
• How do we represent the internal state of SaM?
• How do we load programs from a file?
• How do we write code to interpret each of the

opcodes?
• How do we translate a high-level language like

Java into SaM code?

6

31

Why you need CS 211

You will be able to design and write moderately
large, well-structured programs to simulate such
systems.
Computer systems are complex. Need CS to make
them work; can’t just hack it

• Selected software disasters:
• CTAS air traffic control system 1991-present
• Ariane 5 ex-rocket
• Denver airport automated baggage handling

32

Why you need CS211, cont’d
Fun and intellectually interesting: cool math ideas
meet engineering and make a difference.

• Recursion, induction, logic, discrete structures, …
Crucial to any engineering or science career

• Good programmers are >10x more productive
• Leverages knowledge in other fields, makes new

possibilities
• Where will you be in 10 years?

33

Why you need CS211, cont’d
Real systems are large, complex, buggy, bloated, unmaintainable,
incomprehensible.

Year Operating System Millions of lines of code*
1993 Windows NT 3.1 6
1994 Windows NT 3.5 10
1996 Windows NT 4.0 16
2000 Windows 2000 29
2001 Windows XP 40
2005 Windows Vista Beta 2 50

Commercial software typically has 20 to 30 bugs for every 1,000
lines of code†

*source: Wikipedia
†source: CMU CyLab Sustainable Computing Consortium

34

Moore’s Law

From Lives and death of Moore’s Law, Ilkka Tuomi, 2002

35

Grandmother’s Law

• Brain takes about 0.1 second to recognize
your grandmother
– About 1 second to add two integers (e.g.

3+4=7)
– About 10 seconds to think/write statement of

code
• Your brain is not getting any faster!

36

Motivation
• Computers double in speed every 18 months

– Software doubles in size every M Years
– Data doubles in size every N Years
– Your brain never doubles in speed
– But we do get smarter, and can work in teams

• Computer science is increasingly important
– Better algorithms
– Better data structures
– Better programming languages
– Better understanding of what is (and is not) possible

