CS 211 Computers and Programming
Spring 2002
Prelim II Solutions April 16th, 2002

NAME:

CU ID:

Recitation instructor/time

You have one and a half hours to do this exam.

All programs in this exam must be written in Java. Excessively con-
voluted code will not be graded.

>k 5k 3k >k 5k 5k >k 5k 3k >k 5k %k 5k 5k %k 5k 3k 5k 5k >k >k %k >k >k >k 5k >k >k >k >k >k >k >k >k >k >k >k >k %k >k >k >k >k %k >k >k >k >k >k >k %k >k %k %k %k %

Problem Score
1

Total



1. (15 points)

(a) (10 points) Write a Java class method named append that takes
two non-empty linked lists L1 and L2 as parameters, and updates
the last cell of L1 so that it points to the first cell of L2, as shown
in Figure 1 below. The method does not return anything. The
ListCell class from lecture is reproduced at the end of the exam.
You may NOT use the Java LinkedList class.

(b) (5 points) What is the asymptotic complexity of your algorithm,
expressed as a function of n; and no where n, is the number of el-
ements in L1, and ng is the number of elements of L2 respectively?
Justify your answer briefly.

L1

NEIREIN [NET

"Let" "take" "you" "down"

L1 L2

NETRE =R e

"Let" "me" "take" "you" "down"

Figure 1: Appending two lists
(a)
public static void append(ListCell L1, ListCell L2) {
ListCell finger = L1;

while (finger.getNext() != null)
finger = finger.getNext();

finger.setNext (L2);



(b) This is an O(nq) algorithm because the number of iterations of
the while-loop is equal to n1, and each iteration performs a constant
amount of work.



2. (15 points)
Suppose fi(n) = O(g(n)) and fa(n) = O(g(n)). Answer the following

questions.

(a)

(b)

(a)

Consider the function h(n) = fi(n) + fz2(n). Is h(n) = O(g(n))?
Justify your answer formally using witness pairs (k, N) as de-
scribed in class.

Consider the function k(n) = fi(n) x fa(n). Is k(n) = O(g(n))?
Justify your answer formally.

Yes.

We know that there exist ci, ni, co and ngy such that

fi(n) <c1 *g(n) for all n > ny

fa(n) < cg * g(n) for all n > ny

Let ¢s = ¢1 + ¢ and ngy = maz(ny,ng). It is easy to see that for
all n > ng, fi(n) + fa(n) < cs * g(n).

No. Let fi(n) =n and fa(n) = n.

So fi(n) = O(n) and fa(n) = O(n).

We will show that k(n) = n? # O(n). If not, we can find a ¢ and
no such that for all n > ng, n? < ¢*n. But this is impossible
becaue (n? — c*n) < 0 implies that (n — ¢) < 0, so n < ¢ which
contradicts the assumption that this holds for all n > ny.



3. (30 points)

(a)

(a)

(b)
(c)
(d)

(e)
(f)

(10 points) Write a recursive class method that computes the
number of nodes in a binary tree. Assume that the root of the
tree is a parameter to the method. The TreeCell class from lecture
is reproduced at the end of the exam.

2 points) Does your method do an in-order, post-order, or pre-
p y Y
order walk of the tree?

(3 points) What is the asymptotic complexity of your method?
Explain your answer briefly.

(10 points) Write a recursive class method to print the values
stored in a binary search tree. You may assume that the root
of the tree is a parameter to the method. The values must be
printed in descending order — that is, the largest value must be
printed first. You may assume that each data item has a toString
method that returns a string representation of that item.

(2 points) Does your method do an in-order, post-order, or pre-
order walk of the tree?

(3 points) What is the asymptotic complexity of your method?
Explain your answer briefly.

public static int numNodes(TreeCell t) {
if (t == null) return 0;
else return 1 + numNodes(t.getLeft())
+ numNodes(t.getRight());
}
Post-order traversal
Complexity = O(n) where n is number of nodes in tree.
public static void printValues(TreeCell t) {
if (t == null) return;
else {
printValues(t.getRight());
System.out.print(" " + t.getDatum() + " ");
printValues(t.getLeft());
}
}

In-order traversal

O(n) where n is the number of nodes in the tree.



4. (Short answers) (20 points)

Time in the following questions refers to worst-case asymptotic com-
plezxity.

(a) Linear search of an array requires that the array be sorted. True
or false.

(b) Linear search in a sorted array of n elements takes time _________.

(c) Binary search in an array requires that the array be sorted. True
or false.

Binary search in a sorted array of n elements takes time _________.
Quick-sort of an array of n elements takes time _________.
Merge-sort of an array of n elements takes time .
Insertion into a sorted list of n elements takes time _________.
Deletion from a sorted list of n elements takes time _________.

Search in a (not necessarily balanced) binary search tree of n
elements takes time _________.

(j) Deletion in a (not necessarily balanced) binary search tree of n
elements take time _________.

=

B @
o e e e e o e D O

—_ T~
G o o

N N
o, =



5. (12 points) A binary tree is known to have 2" — 1 nodes where n is
some positive integer greater than 1, but nothing else is known about
its structure.

(a
(b

(c

)
)
)

What is the smallest number of leaf nodes it can have?
What is the largest number of leaf nodes it can have?

What is the largest number of edges that can be there in a simple
path from the root of the tree to a leaf?

What is the smallest number of edges that can be there in a
simple path from the root of the tree to a leaf?

Smallest number of leaf nodes = 1. Example: chain of nodes.
Largest number of leaf nodes = 2"~!'. Example: complete tree.
Largest number of edges = 2™ — 2. Example: chain of nodes.

Smallest number of edges = 1. Example: single node hanging off
root and other nodes in other sub-tree of root.



6. (8 points) We know that a sorted array can contain values in either
ascending or descending order. As defined in class, binary search trees
contain values in “ascending” order — that is, the left sub-tree of a
node contains values less than the value at the node, while the right
sub-tree contains values greater than the value at that node.

Define a reverse binary search tree to be a binary search tree that
contains values in “descending” order — that is, the left sub-tree of
a node contains values greater than the value at that node, while the
right sub-tree contains values less than the value at that node.

(a) Write a recursive class method to modify a binary search tree
into the corresponding reverse binary search tree. Assume that
the root of the tree is passed as a parameter to the method, and
that the tree is represented using the TreeCell class given at the
end of this exam.

(b) Does your method perform an in-order, post-order or pre-order
walk of the tree?

8

() (o () (5

& o

Binary Search Tree Reverse Binary Search Tree

(a) public static void reverseBST(TreeCell t) {
if (t == null) return;
//swap left and right sub-trees
TreeCell temp = t.getLeft();
t.setLeft(t.getRight());
t.setRight (temp) ;
//recursively handle sub-trees
reverseBST(t.getLeft());
reverseBST(t.getRight ());



//Another solution is to reverse sub-trees first, and then swap
//left and right sub-trees

(b) Pre-order (alternative solution is post-order)



