CS 211

Computers and Programming

Fall 2002
Prelim II Solution

November 19th, 2002




1. (Induction, 15 points)

The Fibonacci sequence is the sequence

fib(1) =1
fib(2) =1
fib(n) = fib(n-1) + fib(n-2) (for n > 2)

Let ng be the smallest positive integer such that fib(ng) > ni.

(a) (5 points) Find ny.

(b) (10 points) Use induction to show that for all n > ng, fib(n) > n?.
State clearly what the base and inductive cases are.

Solution:

(a) ng = 13

(b) Induction on n.

Base cases: n = 13, 14.
fib(13) = 233 > 13°2 = 169,
fib (14) = 377 > 196.

Induction step:
Induction hypothesis: for n = 13, 14, ..., k, fib(n) > n"2
We want to show that for n = k+1, fib(n) > n~2
fib(k+1) = fib(k) + fib(k-1)
From induction hypothesis, we know fib(k) > k"2 and fib(k-1) > (k-1)"2,
so fib(k+1) > k™2 + (k-1)"2
k"2 + (k-1)"2 =k"2 + k™2 - 2k + 1

k™2 + 2k + 1 + k™2 - 4k

(k+1) "2 + k(k-4)

since k >= 13, k-4 > 0

therefore, (k+1)°2 + k(k-4) > (k+1)"2

so fib(k+1) > (k+1)"2 + k(k-4) > (k+1)"2

2 points for stating the base case.
2 points for stating the inductive case clearly.
6 points for correct proof.



2. (Asymptotic complexity, 10 points)

(a) (2 points) What is the most accurate big-O complexity of
f(n) = 2nlog(n) + 4n + 17log(n)? You do not need to justify
your answer.

(b) (2 points) Kareem Abdul-Java claims that the big-O complexity
of the function f(n) in the previous part is O(n®). Is he right?
Give an informal explanation why or why not.

(c) (4 points) Give a formal proof that log(n+1) is O(log(n)) by find-
ing a witness pair to establish this fact.

(d) (2 points) Scarlett O’Java had an argument with Rhett Butler
about sorting methods. She claimed that merge-sort will run
faster than quick-sort on any input array (any size, any values)
because merge-sort is an O(nlog(n)) algorithm while quick-sort
is O(n?) algorithm. Is Scarlett right? If not, explain briefly why
not.

Solution:

(a) O(nlog(n))
(b) Yes, because n® grows faster than nlog(n).

(c) We must find a witness pair (k,n0) such that
log(nt+l) <= k. log(n) for n > n0.
Choose k = 2 and n0 = 2.
Since (n+1) < n*n for all n >= 2, the result is established.

2 points for correct k
2 points for correct nO

(d) No. Quicksort is only O(n?) in worst case. It has O(nlog(n))
expected running time. In practice it is usually run faster than
mergesort since the constant factor for quicksort is smaller.



3. (Graph search, 20 points)
Consider the following graph.

Figure 1: Graph search example

(a) (4 points) Write down two different breadth-first orderings of the
nodes in this graph, starting from node A.

(b) (6 points) Write down two different depth-first orderings of the
nodes in this graph, starting from node A.

(c) (10 points) The famous German aviator Graph Zeppelin wants
to build the graph in Figure 1 using the TreeCell class discussed
in lecture. That is, each node of the graph must be represented
by a TreeCell object, and each edge of the graph is a left or right
reference in a TreeCell object. Write down a sequence of Java
statements which construct this graph. For your convenience,
the TreeCell class is reproduced at the end of this exam.

Solution:

(a) (2 points per solution) ABD CEand ADBCE
(b) (3 points per solution) ABCD Eand ABCED
(c) TreeCell a = new TreeCell(A);

TreeCell b = new TreeCell(B);
TreeCell ¢ = new TreeCell(C);
TreeCell d = new TreeCell(D);

TreeCell e = new TreeCell(E);
a.setLeft(b);



® 0 0O T oW

= W

.setRight (d) ;
.setLeft(c);
.setRight (d) ;
.setLeft(e);
.setRight(d);
.setLeft(d);

points for right number of calls to comnstructor.
point for each of the 7 edges inserted correctly.



4. (Lists and Trees, 25 points)

Write a class method that takes a binary tree as input, and returns a
list containing all the elements in the tree in post-order. The tree is
implemented using the TreeCell class (given at the end of this exam
for your convenience), while the list must be implemented using the
ListCell class (also given at the end of this exam). Your method will
be passed the root of the binary tree as a parameter. You may not
use any of the setter methods in the TreeCell class.

Hint: you may find it convenient to define a recursive helper function
that takes both a tree and a list as input parameters, and returns a
list as its result. Think carefully about how to traverse the tree to
build the list painlessly. Our solution has about 10 lines of code. The
ListCell and TreeCell classes are reproduced at the end of this exam.

Solution: The only tricky part of this problem is to realize that a list
must be built from the bottom-up (unless you use setter methods),
so the post-order linearization of the tree must be accomplished by
making a pre-order traversal of that tree. Use a small example to
understand this; it will also be discussed in section.

// Since new cell is added at the beginning of the list,
// in order to have post-order ordering of the tree nodes
public static ListCell toList(TreeCell root)
{
if (root == null) return null;
ListCell list = new ListCell(root.getDatum(), null);
list = preorderTraversal(root.getRight(), list);
list = preorderTraversal(root.getLeft(), list);
return list;
}
// we need to visit the tree nodes in pre-order.
private static ListCell preorderTraversal(TreeCell root, ListCell list)
{ if (root == null) return list;
list = new ListCell(root.getDatum(), list);
list = preorderTraversal(root.getRight(), list);
list = preorderTraversal(root.getLeft(), list);
return list;

1 point for static



DN NNDIDNDDNDDN

points
points
points
points
points
points
points
points

for
for
for
for
for
for
for
for

correct type declaration of tolList header.
checking if root is null

appending value at root

correct calls to helper function

correct header for preorderTraversal
checking if root is null

appending value at root

making correct recursive calls



5. (Heaps, 15 points)

(a) (10 points) Uriah Heap has a binary tree constructed from the
TreeCell class described in class. He wants to know if the tree is a
heap. Write a class method that takes the root of the binary tree
as input, and returns true if the tree is a heap and false otherwise.

(b) (5 points) What is the asymptotic complexity of your method?
Justify your answer briefly.

Solution:

(a) public static boolean isHeap(TreeCell root)

{

L = T = = S

if (root == null) return true;

//check that left and right subtrees are heaps
boolean leftIsHeap = isHeap(root.getLeft());
boolean rightIsHeap = isHeap(root.getRight());

//compare value at root with values in children if any
boolean leftIsLess = true;
boolean rightIslLess = true;
if (root.getLeft() != null))
leftIsLess = ((Comparable) (root.getDatum())) .compareTo(root.getLeft().ge
if (root.getRight() !'= null))
rightIsLess = ((Comparable) (root.getDatum())) .compareTo(root.getRight().

//put it all together
return leftIsHeap & rightIsHeap & leftIslLess & rightIsLess;

point for static

point for correct type declaration

point for checking is root is null

point for chcecking left is heap

point for checking right is hap

point for checking left root value is less
point for checking if left is null

point for checking right root value is less
point for checking if right is null



1 point for correct comparisons
-1 point for no cast to Comparable
-1 point for not using getter methods
(b) O(n). Each tree node is visited once, and in each visit a constant
number of operations are performed.



6. (Touring award, 15 points))

Willy Loman wants to make a travelling salesman’s tour of the cities
in the following graph. That is, he wants the tour to start at node A,
and end at node A, visiting all cities and never visiting any city (other
than A) more than once.

Figure 2: Willy Loman’s world

(a) (6 points) Write down all the tours that Willy Loman can make.
(b) (3 point) How many tours are there in this graph?

(c¢) (6 points) In a graph with n nodes, what is the maximum number
of possible tours? Hint: consider the complete graph with n nodes
in which each node is connected to every other node.

Solution:

(a) (1 point per solution)

ABCDA
ABDC
ACBD
ACDB
ADBC
ADCB

(b) 6

(c) n-1! (4 points for n!, 0 for any other solution)

== e >

10



class ListCell {

protected Object datum;
protected ListCell mnext;

public ListCell(Object o, ListCell n){
datum = o;
next = n;

¥

//this is sometimes called the '"car" method
public Object getDatum() {
return datum;

¥

//this is sometimes called the "cdr" method
public ListCell getNext (){
return next;

¥

//this is sometimes called the "rplaca" method
public void setDatum(Object o) {
datum = o;

¥

//this is sometimes called the "rplacd" method
public void setNext(ListCell 1){
next = 1;

X

public String toString(){

String rString = datum.toString();

if (next == null) return rString;

else return rString + " " + next.toString();
}
}

class TreeCell {
protected Object datum;
protected TreeCell left;
protected TreeCell right;

public TreeCell(Object i) {
datum = i; //left and right are null by default

11



}

public TreeCell (Object i, TreeCell 1, TreeCell r) {
datum = i;
left = 1;
right = r;

}

public void setDatum(Object o) {
this.datum = o;

}

public Object getDatum() {
return datum;

¥

public void setLeft(TreeCell t) {
this.left = t;
}

public TreeCell getLeft() {
return left;

}

public void setRight(TreeCell t) {
this.right = t;
}

public TreeCell getRight() {
return right;

X

public String toString() {
String 1String,rString;
if (left == null)
1String = "O";
else
1String = left.toString();
if (right == null)
rString = "(O";

else
rString = right.toString();
return "(" + 1String + " " + datum + " " + rString + ")";

12



13



