CS 211 Computers and Programming
Spring 2002
Prelim II April 16th, 2002

NAME:

CU ID:

Recitation instructor/time

You have one and a half hours to do this exam.

All programs in this exam must be written in Java. Excessively con-
voluted code will not be graded.

>k 5k 3k >k 5k 5k >k 5k 3k >k 5k %k 5k 5k %k 5k 3k 5k 5k >k >k %k >k >k >k 5k >k >k >k >k >k >k >k >k >k >k >k >k %k >k >k >k >k %k >k >k >k >k >k >k %k >k %k %k %k %

Problem Score
1

Total



1. (15 points)

(a) (10 points) Write a Java class method named append that takes
two non-empty linked lists L1 and L2 as parameters, and updates
the last cell of L1 so that it points to the first cell of L2, as shown
in Figure 1 below. The method does not return anything. The
ListCell class from lecture is reproduced at the end of the exam.
You may NOT use the Java LinkedList class.

(b) (5 points) What is the asymptotic complexity of your algorithm,
expressed as a function of n; and no where n, is the number of el-
ements in L1, and ng is the number of elements of L2 respectively?
Justify your answer briefly.

L1

NEIREIN [NET

"Let" "take" "you" "down"

L1 L2

NETRE =R e

"Let" "me" "take" "you" "down"

Figure 1: Appending two lists



This page intentionally left blank.



2. (15 points)
Suppose fi(n) = O(g(n)) and fa(n) = O(g(n)). Answer the following
questions.

(a) Consider the function h(n) = fi(n) + fo(n). Is h(n) = O(g(n))?
Justify your answer formally using witness pairs (k,N) as de-
scribed in class.

(b) Consider the function k(n) = fi(n) * fo(n). Is k(n) = O(g(n))?
Justify your answer formally.



This page intensionally left blank.



3. (30 points)

(a)

(10 points) Write a recursive class method that computes the
number of nodes in a binary tree. Assume that the root of the
tree is a parameter to the method. The TreeCell class from lecture
is reproduced at the end of the exam.

(2 points) Does your method do an in-order, post-order, or pre-
order walk of the tree?

(3 points) What is the asymptotic complexity of your method?
Explain your answer briefly.

(10 points) Write a recursive class method to print the values
stored in a binary search tree. You may assume that the root
of the tree is a parameter to the method. The values must be
printed in descending order — that is, the largest value must be
printed first. You may assume that each data item has a toString
method that returns a string representation of that item.

(2 points) Does your method do an in-order, post-order, or pre-
order walk of the tree?

(3 points) What is the asymptotic complexity of your method?
Explain your answer briefly.



This page intensionally left blank.



4. (Short answers) (20 points)

Time in the following questions refers to worst-case asymptotic com-
plezxity.

(a)

Linear search of an array requires that the array be sorted. True
or false.

Linear search in a sorted array of n elements takes time _________.

) Binary search in an array requires that the array be sorted. True

or false.

Binary search in a sorted array of n elements takes time _________.
Quick-sort of an array of n elements takes time _________.
Merge-sort of an array of n elements takes time .
Insertion into a sorted list of n elements takes time _________.
Deletion from a sorted list of n elements takes time _________.

Search in a (not necessarily balanced) binary search tree of n
elements takes time _________.

Deletion in a (not necessarily balanced) binary search tree of n
elements take time _________.



5. (12 points) A binary tree is known to have 2" — 1 nodes where n is
some positive integer greater than 1, but nothing else is known about
its structure.

(a) What is the smallest number of leaf nodes it can have?
(b) What is the largest number of leaf nodes it can have?

(c) What is the largest number of edges that can be there in a simple
path from the root of the tree to a leaf?

(d) What is the smallest number of edges that can be there in a
simple path from the root of the tree to a leaf?

Justify your answers.



6. (8 points) We know that a sorted array can contain values in either
ascending or descending order. As defined in class, binary search trees
contain values in “ascending” order — that is, the left sub-tree of a
node contains values less than the value at the node, while the right
sub-tree contains values greater than the value at that node.

Define a reverse binary search tree to be a binary search tree that
contains values in “descending” order — that is, the left sub-tree of
a node contains values greater than the value at that node, while the
right sub-tree contains values less than the value at that node.

(a) Write a recursive class method to modify a binary search tree
into the corresponding reverse binary search tree. Assume that
the root of the tree is passed as a parameter to the method, and
that the tree is represented using the TreeCell class given at the
end of this exam.

(b) Does your method perform an in-order, post-order or pre-order
walk of the tree?

8

() (o () (5

& o

Binary Search Tree Reverse Binary Search Tree

10



This page intentionally left blank.

11



class ListCell {

protected Object datum;
protected ListCell mnext;

public ListCell(Object o, ListCell n){
datum = o;
next = n;

¥

//this is sometimes called the '"car" method
public Object getDatum() {
return datum;

¥

//this is sometimes called the "cdr" method
public ListCell getNext (){
return next;

¥

//this is sometimes called the "rplaca" method
public void setDatum(Object o) {
datum = o;

¥

//this is sometimes called the "rplacd" method
public void setNext(ListCell 1){
next = 1;

X

public String toString(){

String rString = datum.toString();

if (next == null) return rString;

else return rString + " " + next.toString();
}
}

class TreeCell {
protected Object datum;
protected TreeCell left;
protected TreeCell right;

public TreeCell(Object i) {
datum = i; //left and right are null by default

12



}

public TreeCell (Object i, TreeCell 1, TreeCell r) {
datum = i;
left = 1;
right = r;

}

public void setDatum(Object o) {
this.datum = o;

}

public Object getDatum() {
return datum;

¥

public void setLeft(TreeCell t) {
this.left = t;
}

public TreeCell getLeft() {
return left;

}

public void setRight(TreeCell t) {
this.right = t;
}

public TreeCell getRight() {
return right;

X

public String toString() {
String 1String,rString;
if (left == null)
1String = "O";
else
1String = left.toString();
if (right == null)
rString = "(O";

else
rString = right.toString();
return "(" + 1String + " " + datum + " " + rString + ")";

13



14



