CS211 Spring 2007
Assignment 2 — Lists, Recursion, Parsing
Due Sunday, 25 February 2007, 11:59:59pm

1 General Instructions

1.1 Purpose

This assignment will help you solidify your knowledge of Java and object-oriented programming, and intro-
duce you to induction, recursion, and list manipulation. For basic Java help, the Java Bootcamp notes on
the course website, the textbook, and the online Java API are good sources.

In the first assignment, we were rather explicit in the design of the programs to help you get started. In
this assignment, you will have more discretion over the design of your program.

1.2 Grading Criteria

As before, solutions will be graded on both correctness and style. For correctness, at the very least your
program must compile without errors or warnings. For style, we like concise, clear, easy-to-read code. Use
mnemonic variable names. Use proper indentation. Comment where necessary for clarification, but do not
overcomment. Be concise; a two-page solution to a problem that can be done in a few lines will lose points,
even if correct.

Occasionally, bonus points will be awarded for implementing optional features. Bonus points do not
count in your score, but are counted separately.

1.3 Partners

In this assignment, you will be allowed to work in pairs. Please follow the instructions on the website for
selecting a partner. You must create a group in CMS for you and your partner.

2 Induction

Purpose: Working with the induction principle
Estimated time: 4 hours
Points: 25

Prove the following statements by induction. The problems are ordered roughly in order of increasing
difficulty.

(i
(ii) Foralln >1,14+3+5+---4+ (2n—1) = n?.

For all n > 1, 3™ > 2",

)
)

(iii) Forallm > 1,12 +42+ 724+ ... + (3n — 2)2 = n(6n®> — 3n — 1)/2.
)

(iv) Evil mutant puddles of ooze from Oozeland have the special ability to divide themselves at will.
However, there are restrictions. Each ooze can only split into 4 or 8 oozes at a time. The King of
the Oozes, Bob, believes that even given this restriction, it would be possible for him to split into any
number of oozes greater than or equal to 13. However Bob doesn’t know math really well, and would
like to prove that this is true to ooze his mind. Prove by induction that any number of oozes greater
than or equal to 13 can be had.

1-3-5---(2n—1) - 1
2:4-6---2n ~ \2n+1

(v) For all n > 1,

page 1

CS211 Assignment 2 — Lists, Recursion, Parsing Due Sunday, 25 February 2007, 11:59:59pm

For each one, make sure you tell us:
e the variable (usually n) that you are doing induction on;

e the statement you are trying to prove, preceded by the values for which it is supposed to hold, typically
something like, “For all n > 0,...”7 or “For all n > 8,...” or “For all multiples of 3 greater than 17,

.
)

e the base case(s);

e the induction hypothesis;

e the induction step, indicating clearly where you use the induction hypothesis;
e the conclusion.

Structure your proofs carefully and identify all these parts clearly.

Submit your answers in a plain text file . Do not use a text formatter and do not format
your text. For the exponentiation operator, use ~. For the multiplication operator, use *. Use pi for .
For the square root, use sqrt(). Parenthesize expressions to avoid ambiguity; for example, 2" ! should be
written 27 (n+1).

3 A File System Simulation

Purpose: List manipulation, simulation
Estimated time: 10 hours
Points: 30

For this part of the assignment, you will be modeling a simple file system. A files system includes two
basic things: a collection of files and a directory structure. All file systems have a few basic operations, such
as creating a file, accessing a specific file, and deleting a file from the collection.

3.1 Implementing the File System

Our file system will consist of a linked list. Each node in the list will represent a single file. The data
contained in each node of the list should be a String representing the file name. (For this problem, you do
not have to represent the contents of the file.) Unlike Windows, filenames in our system are case-sensitive;
that is, , , and are to be considered three different files.

Your file system will be implemented in a public class FileSystem. This class must contain six public
methods with the signatures exactly as shown and the indicated behavior:

e public void create(String name) throws IllegalArgumentException
If there does not already exist a file in the system with the given name, create a new file with that
name and insert it in the linked list at the head of the list. If the file already exists, throw an
IllegalArgumentException, but do not print any message.

e public int access(String name) throws NoSuchElementException
Find the file with the given name in the file system. You will need to search the list from the front. If
the file does not exist, throw a NoSuchElementException, but do not print any message. If the file
was found, return an int giving the position in the list where you found it, starting at 0. This number
is the same as the number of items in the list in front of the accessed element.

e public int delete(String name) throws NoSuchElementException
Exactly the same as access, except delete the file from the file system after you have found it.

page 2

CS211 Assignment 2 — Lists, Recursion, Parsing Due Sunday, 25 February 2007, 11:59:59pm

e public int accessBubble(String name) throws NoSuchElementException
Exactly the same as access, except that after you have found the file, swap it with the file immediately
in front of it on the list. Do this by unlinking the two elements and swapping their positions, not by
just reassigning the names in the list elements. For example, if the file system contains A => B => C
=> D, and accessBubble ("D") is called, then it should return 3, and afterwards the system should look
like A => B => D => C. If the accessed element is already at the head of the list, don’t do anything.

e public int accessMoveToFront(String name) throws NoSuchElementException
Exactly the same as access, except that after we have found the file, we will move it to the front of
the list. For example, if the file system contains A => B => C => D, and accessMoveToFront ("D") is
called, then it should return 3, and afterwards the system should look like D => A => B => C.

e public String toString()
Return a string representation of the entire file system with the file names in order separated by =>,
as shown above.

The list modifications in accessBubble and accessMoveToFront are justified as follows. In the worst
case, searching through a linked list takes O(n) time, also known as linear time. We will discuss big-O
notation later in the course, but the idea is that every time we search through the list, it could take as many
as n steps to find the desired file, where n is the number of files in our system. However, in real systems, file
accesses tend to exhibit locality of reference, which means that they tend to be clustered. There is a good
chance that a file that has been accessed recently will be accessed again very soon. For example, if we have
just read a buffer of data from a file, perhaps a short time later we will want to read another buffer from
the same file.

We can try to gain some performance advantage from locality of reference by rearranging the file system
after each access. Whenever a file is accessed, we can move it closer to the front, so that if it is referenced
again soon in the near future, we will not have to spend as much time looking for it.

The three access methods represent three different strategies. The accessBubble method represents a
less drastic restructuring strategy, the accessMoveToFront method represents a more drastic strategy, and
the access method represents no strategy at all.

The int returned by these methods should be the number of elements in front of the accessed element
before any modifications to the list were performed. That is, it should be the number of files you had to
search through before finding the desired file.

This exercise is meant to give you experience with low-level operations on lists. Thus, for this exercise,
you should not use ArrayList, Vector, or any similar preprogrammed class in the Java API, but should
write your own. The list should be singly-linked, not doubly-linked. Since it is expensive to traverse a list,
you should make sure that any of your methods that need to traverse the list do so at most once.

Submit your code in a file

3.2 Testing Locality Strategies

Now we would like you to do some experiments to compare the three restructuring strategies on random
sequences of file operations. We have provided some code that generates an endless random sequence of file
operations according to a certain distribution. The operations are all of the form (command, filename) where
command is one of CREATE, DELETE, or ACCESS. The code to generate the sequence is in the file and
there is full Javadoc documentation (just like in the Java API) available from a link on the website under
Assignments. To use this code, put the file someplace in your classpath and put import a2.*; at
the beginning of your files. You can then generate a random sequence of VERY_LARGE_NUMBER file
operations as follows:

FileSystemTest fst = new FileSystemTest();

for (int i = 0; i < VERY_LARGE_NUMBER; i++) {
Operation op = fst.nextOperation();
...do something with op...

page 3

http://www.cs.cornell.edu/Courses/cs211/2007sp/info.html#Assignments

CS211 Assignment 2 — Lists, Recursion, Parsing Due Sunday, 25 February 2007, 11:59:59pm

(you have to decide on VERY_LARGE_NUMBER). Write a program that tries out each of the strategies on
several very long sequences of file operations produced by our code, and compute the average search time
under each strategy. Report on which strategy is the best.

You can work with very long sequences (hundreds of thousands of file operations). The algorithm that
generates the operations will not try to access or delete a file that has not been created or a file that has
already been deleted. It is tuned to hover around an equilibrium file system size of about 360-370 files, even
over hundreds of thousands of file operations.

Submit your testing code in a file and your conclusions in a text file

4 MadLibs

Purpose: Recursion, parsing
Estimated time: 15 hours
Points: 40

Your childhood friend Check Steadyhammer is an aspiring writer. Unfortunately, while he has quite a
way with story lines, he has a lot of difficulty thinking up imagery sufficiently creative to impress his audience
(sophisticated literary critics). He thinks that may be you could help him, by having a computer program
randomly fill in some parts of his stories for him, hopefully with something appropriate or at least inspiring.
Now, normally, this would be a daunting task, as the English grammar is very complicated, but luckily Check
is an adherent of the avant-garde Verbosist-Structurist style. This style has two important characteristics:
first, there is little variation of sentence structure, making the grammar pretty simple. Second, the style
insists on describing details, so many parts of speech such as adjectives and adverbs are required in most
cases. This is handy as it means your program can figure out what part of speech to fill in automatically in
most cases, which is especially important since you know that the grammar class was a painful experience
for Check, and you would rather not remind him of it.

Your goal in this assignment is to complete a program for this scenario. We have provided much of the
needed auxilary code, but it is lacking the code to parse the very restricted subset of English. In particular,
you’ll have to complete the parseSentence method of the Parser class, using the recursive descent technique
you learned about in class. Your parser should use the following grammar:

<DeclarativeSentence> terminator

<Sentence> —
<Sentence> — <QuoteSentence> terminator
<DeclarativeSentence> — <NP><VP>
<QuoteSentence> — quote <DeclarativeSentence> quote verb <NP>

<NP> — determiner adjective noun <MaybePP>

<MaybePP> — preposition <NP>

<MaybePP> — ¢
<VP> — adverb verb <Maybe NP>

<Maybe NP> — <NP>

<MaybeNP> — €

and return as its output the text of the completed sentence. Here € represents the empty string, the symbols
< ... > are the nonterminals of the grammar, and the symbols in Roman typeface are the types of the tokens.

We have provided a tokenizer that produces a stream of tokens. Your recursive-descent parser should be
able to determine the appropriate recursive call to make depending on the next token in the input stream.
This can be obtained by calling tokenizer.lookahead().

Besides the token types described in the grammar, there is one other special type: blank, which represents
a word that your program must fill in. To handle the blanks, if the parser knows for sure what part of speech to
expect, it should generate a random word and output it in place of the blank. If the parser cannot determine
the part of speech, it should issue an error, except you should assume that a blank at the beginning of a
sentence will never be a quote.

The determination of the part of speech and generation of random words are done by the Dictionary
class, which we provided. This class in turn reads in the known words from the file . Your

page 4

CS211 Assignment 2 — Lists, Recursion, Parsing Due Sunday, 25 February 2007, 11:59:59pm

parser should read the input using the provided Tokenizer class, which takes care of the I/O, splitting out
the words, and classifying the words using the Dictionary for you; but you’ll have to issue descriptive parser
errors on any errors the tokenizer passes to you, such as unknown words, I/O errors or unexpected end of
file. The parser must also issue an error if the sentence is malformed.

We provide two test programs for your convenience. The StoryCompleter takes a filename as an argument
and makes your parser parse all the sentences in it, outputting the completed version. You can use the files

and as starting points for your testing, but you should try other inputs as well.

The CompleterTester program, on other hand, is interactive, and completes one sentence at a time. Note
that in either case, you can represent a blank as a sequence of underscore (_) characters in the input.

Supplied code for this problem can be found in . You can run , which runs our
version of StoryCompleter, to see how it is supposed to work. Submit your completed . Also,
please turn in your favorite produced output in a text file

5 Submitting Your Work

Points: 5

Submit the following files in CMS:

e Exercise 2:

e Exercise 3:))
e Exercise 4: ,

Do not submit any other files. In particular, do not submit any files. Refer to the submission
format requirements on the course website before submitting any work.

page 5

	General Instructions
	Purpose
	Grading Criteria
	Partners

	Induction
	A File System Simulation
	Implementing the File System
	Testing Locality Strategies

	MadLibs
	Submitting Your Work

