Search Trees

Some Search Structures

e Sorted Arrays
— Advantages
« Search in O(log n) time (binary search)
— Disadvantages
» Need to know size in advance
« Insertion, deletion O(n) — need to shift elements
e Lists
— Advantages
* No need to know size in advance
« Insertion, deletion O(1) (not counting search time)
— Disadvantages
« Search is O(n), even if list is sorted

Search Trees

 Best of both!
— Search, insert, delete in O(log n) time
— No need to know size in advance

* Several flavors
— AVL trees, 2-3 trees, red-black trees,
skip lists, random treaps, ...

Binary Search Trees

 Every node has a left child, a right
child, both, or neither

» Data elements are drawn from a totally
ordered set (e.g., Comparable)

« Every node contains one data element

« Data elements are ordered in inorder

A Binary Search Tree

22)
(8) (47
O @ @ @
& (9 @D
49

« all elements

« all elements

Binary Search Trees

In any subtree:

smaller than the
element at the
root are in the left
subtree

larger than the
element at the
root are in the
right subtree

Search Search

Example: search for 13
To search for an element x:
« if tree is empty, return false
« if X = object at root, return true
« If x < object at root, search left subtree
« If x > object at root, search right subtree

Search Search

Search Search

Search

23)
(6) (47
O @ & &
3 (59 @D
49

Search

boolean treeSearch(Comparable x,
TreeNode t) {
if (t == null) return false;
switch (x.compareTo(t.data)) {
case 0: return true; //found
case 1: return treeSearch(x, t.right);
default: return treeSearch(x, t.left);
3
3

Insertion

To insert an element x:
« search for x — if there, just return
» when arrive at a leaf y, make x a child of y
— leftchildifx <y
—right child if x>y

Insertion

Example: insert 15

Insertion

Insertion

Insertion

Insertion

Insertion

)
(8] (47
O @ @ @

& 59 @
@ @

Insertion

void insert(Comparable x, TreeNode t) {
if (x.compareTo(t.data) == 0) return;
if (x.compareTo(t.data) < 0) {
if (t.left !'= null) insert(x,t.left);
else t.left = new TreeNode(x);
} else {
if (t.right = null) insert(x,t.right);
else t.right = new TreeNode(X);
}
}

Deletion

To delete an element x:
» remove X from its node — this creates a hole
« if the node was a leaf, just delete it
« find greatest y less than x in the left subtree
(or least y greater than x in the right subtree),
move it to x's node
« this creates a hole where y was — repeat

Deletion

To find least y greater than x:
« follow left children as far as possible in right subtree

Deletion

To find greatest y less than x:
« follow right children as far as possible in left subtree

Deletion

Example: delete 25

Deletion Deletion

(8] (47 O (47
© @ @ & O @ @ &
13 (54 1 13 (59 (@D

@8 @8

Deletion Deletion

@ (O

(47 (6) (47)
©» @ @ & © @9 9
13 (59 @D 13 (59 (D

@8 @8

Deletion

Deletion

29
(6] (47
© @9 &9
13 (54 1
@8
Deletion Deletion
29 (20)
(8] (47 O (47
© B @ & O ® @ &
(54 1 (59 (@D
@8 @8
Deletion Deletion
Example: delete 47 @
(6)
O ® @ &
(59 (D

@3

Deletion

29
(6)

O ®@ & &
(59 @D
49

Deletion

Deletion

Deletion

Deletion

Example: delete 29

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion

29

Deletion
29
(@)
13 (89
69 @

Observation

* These operations take time proportional to the
height of the tree (length of the longest path)
e O(n) if tree is not sufficiently balanced

Bad case for search,
insertion, and
deletion — essentially
like searching a list

Solution

Try to keep the tree balanced (all paths
roughly the same length)

Balanced Trees

« Size is exponential in height
* Height = log,(size)
* Search, insert, delete will be O(log n)

Creating a Balanced Tree

Creating one from a sorted array:
« Find the median, place that at the root
« Recursively form the left subtree from the
left half of the array and the right subtree
from the right half of the array

| 1 [6]13]20[48]54]80] (20

OIERS
N ORCICHC

Keeping the Tree Balanced

* Insertions and deletions can put tree out
of balance — we may have to rebalance it
» Can we do this efficiently?

AVL Trees

Adelson-Velsky and Landis, 1962

AVL Invariant:

The difference in height between the
left and right subtrees of any node is
never more than one

An AVL Tree

e <
considered to G @
have height -1

* Note 'Fhat paths @ @ @
antymee @ @) E9 ()

than 1 (e.g.,
paths to 2, 48) @

AVL Trees are Balanced

The AVL invariant implies that:

« Size is at least exponential in height
+n>@d, where ¢ = (1 +V5)/2 ~ 1.618,
the golden ratio!
« Height is at most logarithmic in size
ed<logn/log¢~1.441logn

AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right
subtrees of any node is never more than one

To see that n > ¢4, look at the smallest
possible AVL trees of each height

TR

AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right
subtrees of any node is never more than one

To see that n > ¢4, look at the smallest
possible AVL trees of each height

AO Al AZ A3
L]
/ /\ A AL

AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right
subtrees of any node is never more than one

To see that n > ¢4, look at the smallest
possible AVL trees of each height

60 Al AZ A3 Ad
/ /\;& . Au1§ ZAuz

AVL Trees are Balanced

Ay=1
A =2
Aj=Ay, +Ay,+1, d=2

éo Al A2 A3 Ad
/ /\./AZ& o Au1§ 2Au2

10

AVL Trees are Balanced

Ay=1
A =2
Ag=Ag +AL,+1, d>2

1 2 4 7 12 20 33 54 88

AVL Trees are Balanced

Ag=1
A =2
Ag=Agq +Ag,+1, d=2

1 2 4 7 12 20 33 54 88

112 35 8 13 21 34 55
The Fibonacci sequence

AVL Trees are Balanced

Ap=1
A =2
Ag=Agg +A,+1, d>2

2.4 7_12 20 33 54 88

AN NN

112358 13 21 3455
Ag = Fap=1 = O(¢)

Rebalancing

¢ Insertion and deletion can invalidate
the AVL invariant
* May have to rebalance

Rebalancing
Rotation

« A local rebalancing operation

« Preserves inorder ordering of the elements

* The AVL invariant can be reestablished with at most
O(log n) rotations up and down the tree

Rebalancing

(29
(8) (47
@ (9 @ &
3 59 (3
@3

Example: delete 27

11

Rebalancing

22)
(8)

(47
@ @ @& &
@3 (54 (6D
@8

Rebalancing

22)
(8)

(47
@ @ &
3 59 @
@

Rebalancing

23)
(6)

(47
@ @ & &
a3 @ @
&

Rebalancing

22)
(6)

()
@ (9 @ &4
& @ @
&

Rebalancing

)
(8) (54
@ @ @ &

B ® ® @

2-3 Trees

Another balanced tree scheme
« Data stored only at the leaves
 Ordered left-to-right
« All paths of the same length
« Every non-leaf has either 2 or 3 children
« Each internal node has smallest, largest
element in its subtree (for searching)

12

2-3 Trees

KA by

smallest 2-3 tree of heightd =3 largest 2-3 tree of height d = 3
24 = 8 data elements 3d =27 data elements

» number of elements satisfies 2d <n < 3d
« height satisfies d <log n

Insertion in 2-3 Trees

Insertion in 2-3 Trees

want to insert new element here

Insertion in 2-3 Trees

Insertion in 2-3 Trees

want to insert new element here

Insertion in 2-3 Trees

13

Insertion in 2-3 Trees

YNV

Insertion in 2-3 Trees

YV

Insertion in 2-3 Trees

Deletion in 2-3 Trees

SYISYe

| want to delete this element |

Deletion in 2-3 Trees

YISV

Deletion in 2-3 Trees

TISYe

|want to delete this elementl

14

Deletion in 2-3 Trees

If neighbor has 3 children, borrow one

Deletion in 2-3 Trees

If neighbor has 3 children, borrow one

Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor

Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

15

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

XN

This may cascade up the tree!

Conclusion

Balanced search trees are good
« Search, insert, delete in O(log n) time
* No need to know size in advance
« Several different versions
— AVL trees, 2-3 trees, red-black trees, skip
lists, random treaps, Huffman trees, ...
— find out more about them in CS482

16

