Search Trees

Some Search Structures

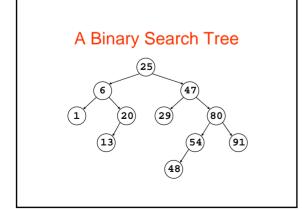
- Sorted Arrays
 - Advantages
 - Search in O(log n) time (binary search)
 - Disadvantages
 - Need to know size in advance
 - Insertion, deletion O(n) need to shift elements
- Lists
 - Advantages
 - No need to know size in advance
 - Insertion, deletion O(1) (not counting search time)
 - Disadvantages
 - Search is O(n), even if list is sorted

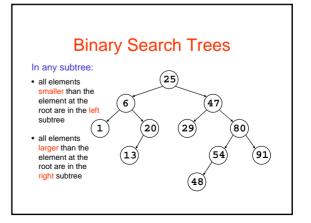
Search Trees

- Best of both!
 - Search, insert, delete in O(log n) time
 - No need to know size in advance
- Several flavors
 - AVL trees, 2-3 trees, red-black trees, skip lists, random treaps, ...

Binary Search Trees

- Every node has a *left child*, a *right child*, both, or neither
- Data elements are drawn from a totally ordered set (e.g., Comparable)
- Every node contains one data element
- Data elements are ordered in inorder

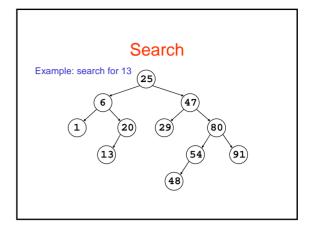


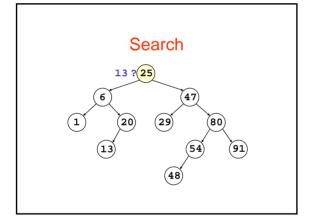


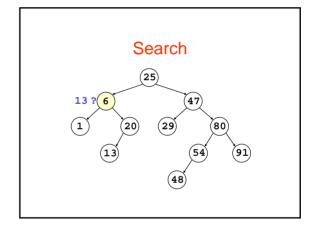
Search

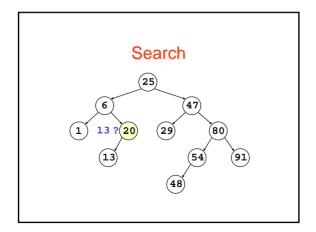
To search for an element x:

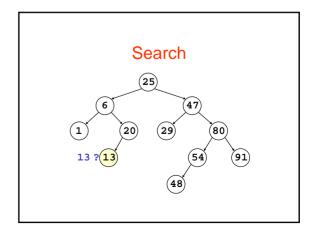
- if tree is empty, return false
- if x = object at root, return true
- If x < object at root, search left subtree
- If x > object at root, search right subtree











Search (25) (47) (80)

Search boolean treeSearch(Comparable x, TreeNode t) { if (t == null) return false; switch (x.compareTo(t.data)) { case 0: return true; //found

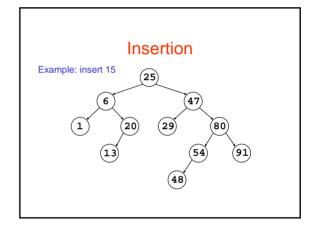
case 1: return treeSearch(x, t.right); default: return treeSearch(x, t.left);

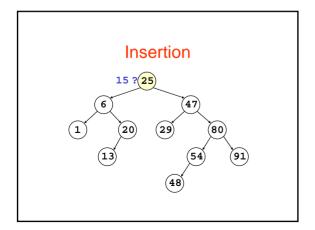
}

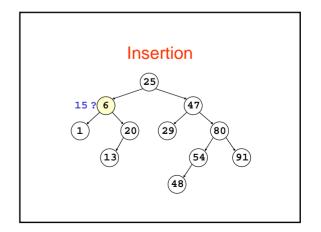
Insertion

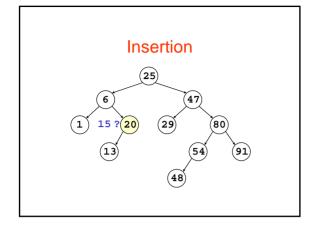
To insert an element x:

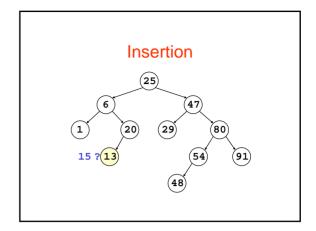
- search for x if there, just return
- when arrive at a leaf y, make x a child of y
 - left child if x < yright child if x > y

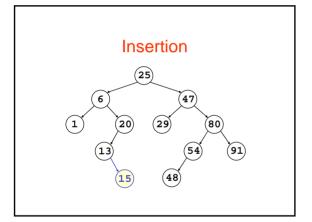


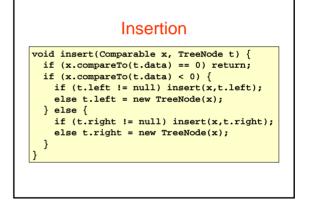










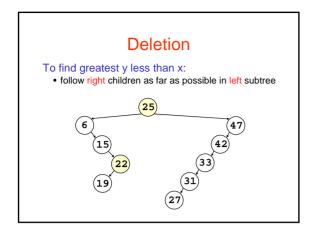


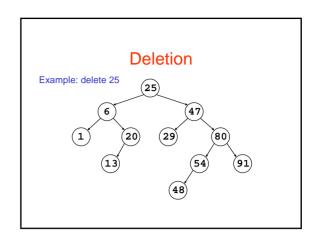
Deletion

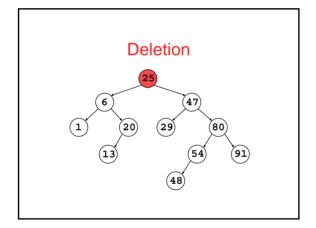
To delete an element x:

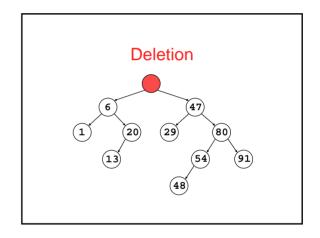
- remove x from its node this creates a hole
- if the node was a leaf, just delete it
- find greatest y less than x in the left subtree (or least y greater than x in the right subtree), move it to x's node
- this creates a hole where y was repeat

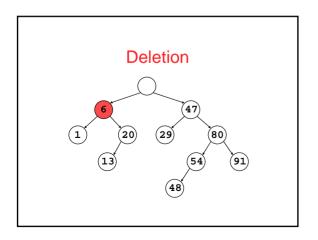
Deletion To find least y greater than x: • follow left children as far as possible in right subtree 25 47 42 22 33 31

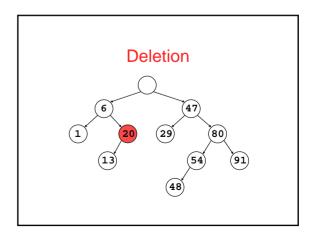


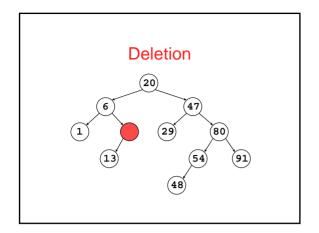


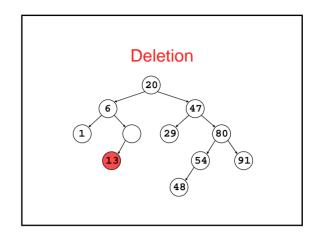


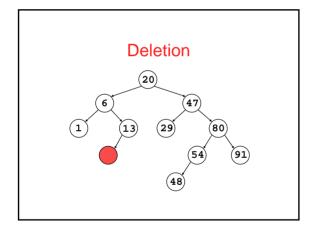


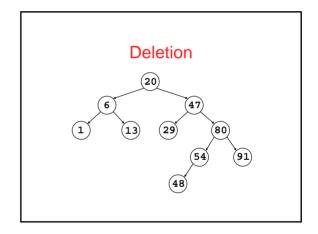


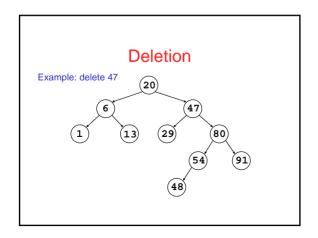


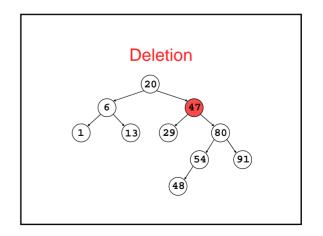


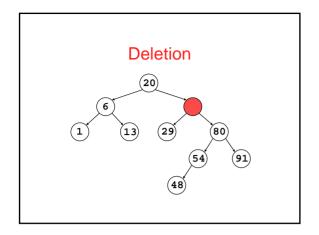


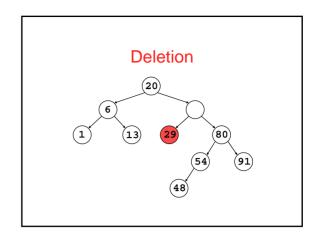


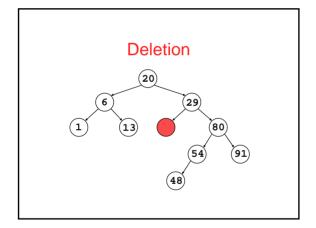


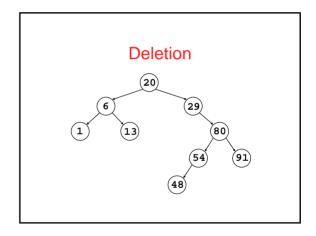


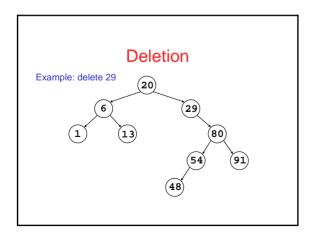


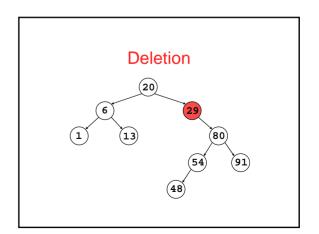


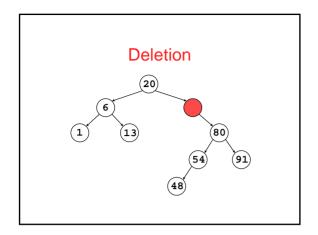


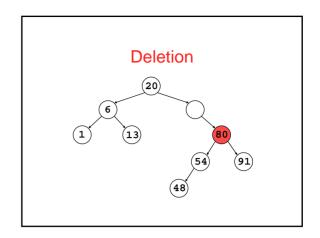


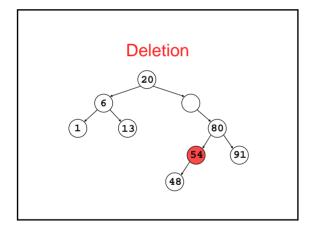


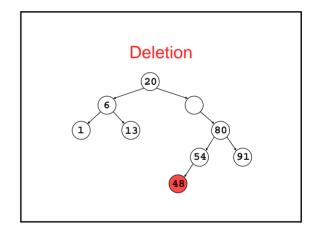


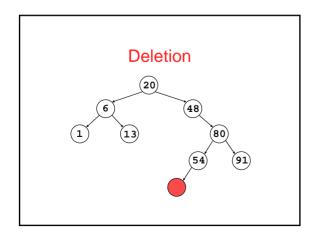


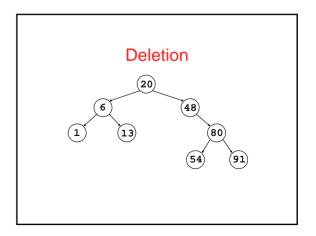










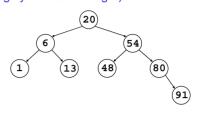


Observation

- These operations take time proportional to the height of the tree (length of the longest path)
- O(n) if tree is not sufficiently balanced

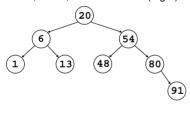
Solution

Try to keep the tree *balanced* (all paths roughly the same length)



Balanced Trees

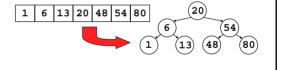
- Size is exponential in height
- Height = $log_2(size)$
- Search, insert, delete will be O(log n)



Creating a Balanced Tree

Creating one from a sorted array:

- Find the median, place that at the root
- Recursively form the left subtree from the left half of the array and the right subtree from the right half of the array



Keeping the Tree Balanced

- Insertions and deletions can put tree out of balance – we may have to rebalance it
- Can we do this efficiently?

AVL Trees

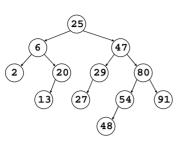
Adelson-Velsky and Landis, 1962

AVL Invariant:

The difference in height between the left and right subtrees of any node is never more than one

An AVL Tree

- Nonexistent children are considered to have height -1
- Note that paths can differ in length by more than 1 (e.g., paths to 2, 48)



AVL Trees are Balanced

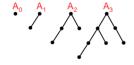
The AVL invariant implies that:

- Size is at least exponential in height
 - n $\geq \varphi^d$, where $\varphi = (1 + \sqrt{5})/2 \sim 1.618$, the golden ratio!
- Height is at most logarithmic in size
 - $d \le \log n / \log \varphi \sim 1.44 \log n$

AVI Trees are Balanced

AVL Invariant:
The difference in height between the left and right subtrees of any node is never more than one

To see that $n \ge \varphi^d$, look at the *smallest* possible AVL trees of each height

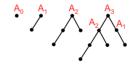


AVI Trees are Balanced

AVL Invariant:

The difference in height between the left and right subtrees of any node is never more than one

To see that $n \ge \varphi^d$, look at the *smallest* possible AVL trees of each height

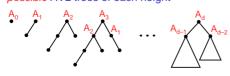


AVL Trees are Balanced

AVL Invariant:

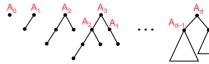
The difference in height between the left and right subtrees of any node is never more than one

To see that $n \ge \varphi^d$, look at the *smallest* possible AVL trees of each height



AVL Trees are Balanced

 $A_0 = 1$ $A_1 = 2$ $A_d = A_{d-1} + A_{d-2} + 1, d \ge 2$



AVL Trees are Balanced

$$\begin{array}{l} A_0=1 \\ A_1=2 \\ A_d=A_{d-1}+A_{d-2}+1, \quad d\geq 2 \\ \\ 1 \quad 2 \quad 4 \quad 7 \quad 12 \quad 20 \quad 33 \quad 54 \quad 88 \quad ... \end{array}$$

AVL Trees are Balanced

$$A_0 = 1$$

$$A_1 = 2$$

$$A_d = A_{d-1} + A_{d-2} + 1, \quad d \ge 2$$

$$1 \quad 2 \quad 4 \quad 7 \quad 12 \quad 20 \quad 33 \quad 54 \quad 88 \quad ...$$

$$1 \quad 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad 55 \quad ...$$
The Fibonacci sequence

AVL Trees are Balanced

$$\begin{array}{l} A_0=1 \\ A_1=2 \\ A_d=A_{d-1}+A_{d-2}+1, \quad d \geq 2 \\ \\ 1 \quad 2 \quad 4 \quad 7 \quad 12 \quad 20 \quad 33 \quad 54 \quad 88 \quad ... \\ \\ 1 \quad 1 \quad 2 \quad 3 \quad 5 \quad 8 \quad 13 \quad 21 \quad 34 \quad 55 \quad ... \\ A_d=F_{d+2}-1=O(\phi^d) \end{array}$$

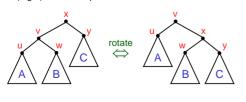
Rebalancing

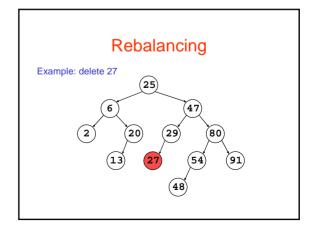
- Insertion and deletion can invalidate the AVL invariant
- May have to rebalance

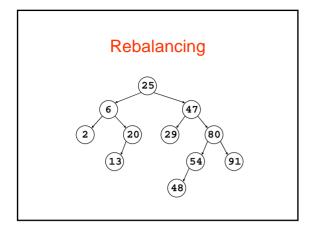
Rebalancing

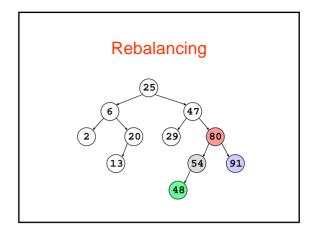
Rotation

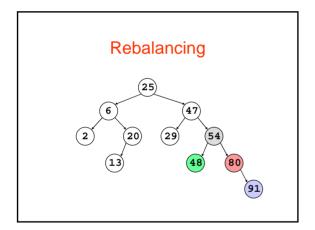
- A local rebalancing operation
- Preserves inorder ordering of the elements
- The AVL invariant can be reestablished with at most O(log n) rotations up and down the tree

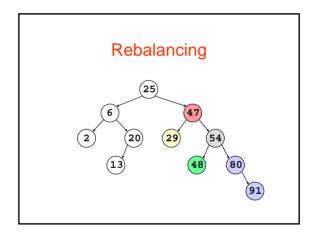


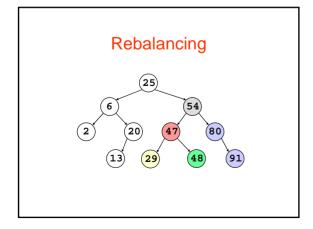




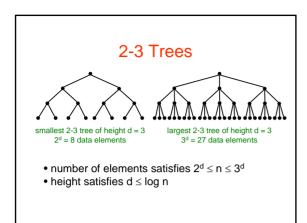


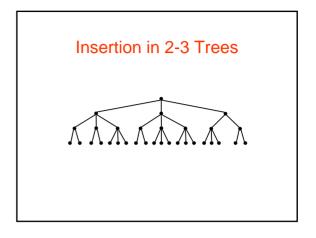


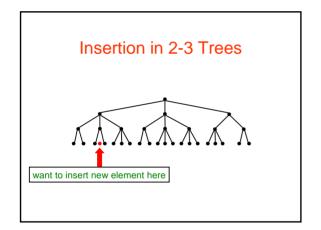


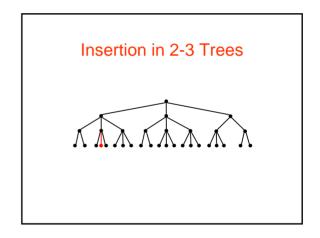


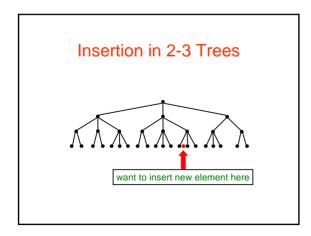
2-3 Trees Another balanced tree scheme Data stored only at the leaves Ordered left-to-right All paths of the same length Every non-leaf has either 2 or 3 children Each internal node has smallest, largest element in its subtree (for searching)

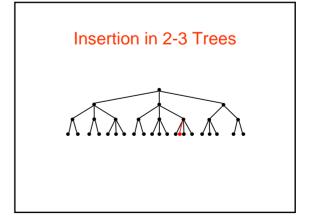




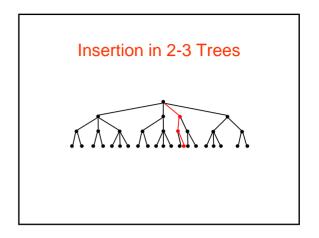


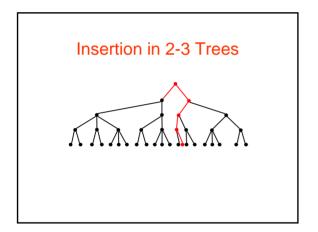


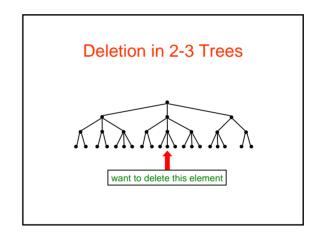


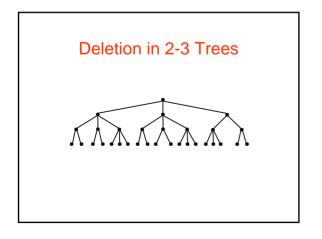


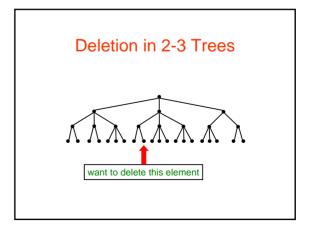
Insertion in 2-3 Trees











Deletion in 2-3 Trees

If neighbor has 3 children, borrow one

Deletion in 2-3 Trees

If neighbor has 3 children, borrow one

Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor

Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Deletion in 2-3 Trees

This may cascade up the tree!

Conclusion

Balanced search trees are good

- Search, insert, delete in O(log n) time
- No need to know size in advance
- Several different versions
 - AVL trees, 2-3 trees, red-black trees, skip lists, random treaps, Huffman trees, ...
 – find out more about them in CS482