CS 211 Prelim

Solutions

Name:

This exam has 8 pages — check now to make sure that you have them all. There are 5 questions worth
100 points total. You will have one hour and fifteen minutes to complete the exam.

This exam is closed book and closed notes. Calculators are not allowed (though I doubt they’d be
helpful). For partial credit, you must show your work. Don’t spend too much time on any one problem.

Abide by Cornell’s Code of Academic Integrity.

Problem | Points | Score
1 25
2 25
3 25
4 10
5 15
Total 100

Friday, July 21

1. Binary Search Trees [25 pts]

(a) [10 pts] Which of A-F are valid binary search trees using the standard compareTo ordering?
What is wrong with the trees that are not BSTs?

Answer:

Binary search trees: Nodes in BSTs have at most two children. For a node x with value val,
nodes below and to the left of x must have value less than val. Nodes below and to the right of x
must have value greater than val. Thus, tree’s A-C are definately BSTs and tree’s F' and G are
definately not BSTs. Tree D has a duplicate value, typically not allowed in BSTs. Tree E is a
BST under a reverse ordering, but not under the standard ordering. Fither answer was accepted
for D and E as long as it was justified.

(b) [5 pts] Which of the following traversals will visit the nodes of a binary tree in sorted order?

i. preorder

ii. inorder
iii. postorder

iv. mailorder

Answer:
Inorder (visit left child, then self, then right child) will visit the nodes of a BST in sorted order.

[10 pts] Complete the following recursive method:

class BSTNode

{
public BSTNode left;
public BSTNode right;
public int value;
}

/** Inserts a value into a binary search tree, and returns the root of the
* resulting tree.

* @param root the tree to be updated

* @param tolInsert the integer to be inserted
* Qreturns the resulting tree

*/
BSTNode BST-insert(BSTNode root, int tolmsert)
{

Answer:

/* if root.val = val, do nothing (thereby avoiding duplicates) */

if (root == null) /* base case, avoids null ptr exception */
return new BSTNode(val,null,null);

else if (root.val < val) /* recurse to left descendents */
root.left = BSTInsert(root.left,val);

else if (root.val > val) /* recurse to right descendents */
root.right = BSTInsert(root.right,val);

else throw new Exception("cannot insert duplicate values");

return root;

2. Induction [25 pts]

Consider the following algorithm:

/** Removes the odd-indexed elements from a singly-linked list
* @param head the head of the list to be filtered
*/
static void dropOdds(ListCell head) {

if(head == null || head.next == null)

return;
head.next = head.next.next
dropOdds (head.next)

Use induction to show that if ¢ has n elements, then after calling drop0dds(¢), ¢ will contain (%1
elements.

Answer:
Some notes: If |z| denotes the length of list x, then:

o |z.next| =|z|—1
o |z| = |z.next| + 1

o |z.next.next| = |z| — 2.

base case if head has 0 or 1 elements In this case, either:

o head == null (0 elements), or

o head.next == null (1 element)

In both these cases, dropOdds does nothing, leaving the list with 0 or 1 elements, respectjvely.
Conveniently, [0/2] =0 and [1/2] =1 as desired.

(strong) inductive hypothesis Assume that if any list £ of length k < n is passed into drop0dds,
then when drop0dds returns, £ will contain [k/2] elements.
inductive step Suppose |¢| =n+1. We want to show that after drop0dds returns, that |¢| = P;Ll}

Because n > 0 (n = 0 is handled as a base case), n+1 > 1, and thus head /= null and
head.next !'= null. In this case, dropOdds(head) assigns head.next to head.next.next
and recursively calls dropOdds (head.next).

Before the assignment:
e |head| =n+1
e |head.next.next|=n—1
After the assignment:
e |head.next|=n—1
e |head| = |head.next|+1=n
After recursive call (by inductive hypothesis ... as |head.next| < n):
e |head.next| = [Z251]
e |head| = [251] 4+ 1.

Conveniently, [”7_11 +1

[L‘H

5 W, which is what we set out to prove.

3. Inheritance [25 pts] This question refers to the class hierarchy on page 6. You may detach that page
for reference.

Examine the following lines of code, and do the following:

(a) Cross out any lines that wouldn’t compile.
(b) Circle any lines that would throw an exception.

(¢) Write the output for the remaining lines.

A a = new B(Q); // compiles and runs
System.out.println(a.x); // prints A.x
System.out.println(a.y); // prints A.y
System.out.println(a.contents()); // prints B.x A.y

B b= (B) a; // compiles and runs
System.out.println(b.x); // prints B.x
System.out.println(b.y); // prints A.y
System.out.println(b.contents()); // prints B.x A.y

C ¢ = new CQ); // compiles and runs
System.out.println(c.x); // prints C.x
System.out.println(c.y); // prints A.y
System.out.println(c.contents()); // prints A.x C.y

a = new C() { public String getX(){ return x; } }; // compiles and runs

System.out.println(a.contents()); // prints C.x C.y

List<A> alistl = null; // compiles and runs
alistl = new ArrayList<A>(); // compiles and runs
alistl.add(new AQ)); // does not compile
alistl.add(new CQO)); // compiles and runs
List<A> alist2 = null; // compiles and runs
alist2 = new ArrayList(); // does not compile
alist2.add(new BO)); // null pointer exception
alist2.add(new CQO)); // null pointer exception
List<? extends A> wlist = null; // compiles and runs
wlist = new ArrayList(); // compiles and runs
wlist.add(new B()); // does not compile
wlist.add(new A(Q)); // does not compile

A a = wlist.get(0); // index out of bounds exception
B b = wlist.get(0); // does not compile

Here is the class hierarchy for question 3:

abstract class A

{
public String x = "A.x";
public String y = "A.y";
public String getX() {
return Xx;
}
public abstract String getY();
public String contents() {
return getX() + ", " + getY();
}
}
class B extends A
{
public String x = "B.x";
public String getX() { return x; }
public String getY() { return y; }
}

class C extends A

{

private String y = "C.y";

public String x = "C.x";

public String getY() { return y; }
}

Just for reference, here are the relevant methods of the List and ArrayList types:

public interface List<E> extends Collection<E>

{
public void add(E o);
public E get(int i);
b
public class ArrayList<E> implements List<E>
{
/...
b

4. Recursion [10 pts] What text is output during the method call foobar (86)?

public void foobar(int x) {
System.out.println("result: (" + foo(x) + ")");
}

public int foo(int x) {
if(x <= 0) return 1;

System.out.println("foo(" + x + ")");
return 1 + bar(x-42) + foo(x/4);
}

public int bar(int y) {
if(y <= 0) return 1;

System.out.println("bar(" + y + ")");
return 1 + foo(y-42) + bar(y/4);
}

Answer:
Here is the call tree:

(1) Char(@4) > Cfoo21) 2

() Coo2) > Char(11) > 1) ar(<0)> Foo(5) >
1) ar<0)> CHoo®) > (1) THoo(<0) > Cbar@) > (1) Char(<0) > foo(h) >
(1) Cfoo<0) > CThar(0) 2 (1) har(<0)> foo(0) >

This yields the following output:

foo(86)
bar(44)
foo(2)
bar(11)
bar(2)
foo(21)
foo(5)
foo(1)
result: (17)

5. Grammars and Parsing [15 pts]

Recall the grammar for the InfoStructure language:

value
struct
attr_list
attr_tail
attr
array
value_list
value_tail

bbbl

struct | array | NUMBER | STRING
NAME OPEN_PAR attr_list CLOSE_PAR
attr attr_tail | e

COMMA attr attr_tail | e

NAME EQUALS value

OPEN_BRACE wvalue_list CLOSE_BRACE
value value_tail | €

COMMA value value_tail | €

Draw the parse tree that shows that the following is a valid InfoStructure document:

State(name =

"New York", cities = {"New York", "Ithaca"})

You may abbreviate the single-character tokens (e.g. write { instead of CLOSE_BRACE).

Answer:

STRING:"New York"

STRING:"Ithaca"

