
CS 211 Prelim Friday, July 21

Solutions
Name: NetID:

This exam has 8 pages — check now to make sure that you have them all. There are 5 questions worth
100 points total. You will have one hour and fifteen minutes to complete the exam.

This exam is closed book and closed notes. Calculators are not allowed (though I doubt they’d be
helpful). For partial credit, you must show your work. Don’t spend too much time on any one problem.
Abide by Cornell’s Code of Academic Integrity.

Problem Points Score
1 25
2 25
3 25
4 10
5 15

Total 100

1

1. Binary Search Trees [25 pts]

(a) [10 pts] Which of A-F are valid binary search trees using the standard compareTo ordering?
What is wrong with the trees that are not BSTs?

42

21 72

10 33 87 64

F

43

42

44

45B

42A 42

91

98 73

34

37 6

11 1

E

42

9 111

1 13 69

C

42

50

39 60

55 614138

G

42

42 72

5

D

Answer:
Binary search trees: Nodes in BSTs have at most two children. For a node x with value val,
nodes below and to the left of x must have value less than val. Nodes below and to the right of x
must have value greater than val. Thus, tree’s A-C are definately BSTs and tree’s F and G are
definately not BSTs. Tree D has a duplicate value, typically not allowed in BSTs. Tree E is a
BST under a reverse ordering, but not under the standard ordering. Either answer was accepted
for D and E as long as it was justified.

(b) [5 pts] Which of the following traversals will visit the nodes of a binary tree in sorted order?

i. preorder

2

ii. inorder
iii. postorder
iv. mailorder

Answer:

Inorder (visit left child, then self, then right child) will visit the nodes of a BST in sorted order.

(c) [10 pts] Complete the following recursive method:

class BSTNode
{

public BSTNode left;
public BSTNode right;
public int value;

}

/** Inserts a value into a binary search tree, and returns the root of the
* resulting tree.
* @param root the tree to be updated
* @param toInsert the integer to be inserted
* @returns the resulting tree
*/

BSTNode BST-insert(BSTNode root, int toInsert)
{

Answer:

/* if root.val = val, do nothing (thereby avoiding duplicates) */
if (root == null) /* base case, avoids null ptr exception */

return new BSTNode(val,null,null);
else if (root.val < val) /* recurse to left descendents */

root.left = BSTInsert(root.left,val);
else if (root.val > val) /* recurse to right descendents */

root.right = BSTInsert(root.right,val);
else throw new Exception("cannot insert duplicate values");
return root;

}

3

2. Induction [25 pts]

Consider the following algorithm:

/** Removes the odd-indexed elements from a singly-linked list
* @param head the head of the list to be filtered
*/
static void dropOdds(ListCell head) {

if(head == null || head.next == null)
return;

head.next = head.next.next
dropOdds(head.next)

}

Use induction to show that if ` has n elements, then after calling dropOdds(`), ` will contain
⌈

n
2

⌉
elements.

Answer:
Some notes: If |x| denotes the length of list x, then:

• |x.next| = |x| − 1

• |x| = |x.next|+ 1

• |x.next.next| = |x| − 2.

base case if head has 0 or 1 elements In this case, either:

• head == null (0 elements), or
• head.next == null (1 element)

In both these cases, dropOdds does nothing, leaving the list with 0 or 1 elements, respectively.
Conveniently, d0/2e = 0 and d1/2e = 1 as desired.

(strong) inductive hypothesis Assume that if any list ` of length k ≤ n is passed into dropOdds,
then when dropOdds returns, ` will contain dk/2e elements.

inductive step Suppose |`| = n+1. We want to show that after dropOdds returns, that |`| =
⌈

n+1
2

⌉
.

Because n > 0 (n = 0 is handled as a base case), n + 1 > 1, and thus head != null and
head.next != null. In this case, dropOdds(head) assigns head.next to head.next.next
and recursively calls dropOdds(head.next).
Before the assignment:

• |head| = n + 1
• |head.next.next| = n− 1

After the assignment:

• |head.next| = n− 1
• |head| = |head.next|+ 1 = n

After recursive call (by inductive hypothesis . . . as |head.next| ≤ n):

• |head.next| =
⌈

n−1
2

⌉
• |head| =

⌈
n−1

2

⌉
+ 1.

Conveniently,
⌈

n−1
2

⌉
+ 1 =

⌈
n+1

2

⌉
, which is what we set out to prove.

4

3. Inheritance [25 pts] This question refers to the class hierarchy on page 6. You may detach that page
for reference.

Examine the following lines of code, and do the following:

(a) Cross out any lines that wouldn’t compile.

(b) Circle any lines that would throw an exception.

(c) Write the output for the remaining lines.

A a = new B(); // compiles and runs
System.out.println(a.x); // prints A.x
System.out.println(a.y); // prints A.y
System.out.println(a.contents()); // prints B.x A.y

B b = (B) a; // compiles and runs
System.out.println(b.x); // prints B.x
System.out.println(b.y); // prints A.y
System.out.println(b.contents()); // prints B.x A.y

C c = new C(); // compiles and runs
System.out.println(c.x); // prints C.x
System.out.println(c.y); // prints A.y
System.out.println(c.contents()); // prints A.x C.y

a = new C() { public String getX(){ return x; } }; // compiles and runs
System.out.println(a.contents()); // prints C.x C.y

List<A> alist1 = null; // compiles and runs
alist1 = new ArrayList<A>(); // compiles and runs
alist1.add(new A()); // does not compile
alist1.add(new C()); // compiles and runs

List<A> alist2 = null; // compiles and runs
alist2 = new ArrayList(); // does not compile
alist2.add(new B()); // null pointer exception
alist2.add(new C()); // null pointer exception

List<? extends A> wlist = null; // compiles and runs
wlist = new ArrayList(); // compiles and runs
wlist.add(new B()); // does not compile
wlist.add(new A()); // does not compile
A a = wlist.get(0); // index out of bounds exception
B b = wlist.get(0); // does not compile

5

Here is the class hierarchy for question 3:

abstract class A
{

public String x = "A.x";
public String y = "A.y";

public String getX() {
return x;

}

public abstract String getY();

public String contents() {
return getX() + ", " + getY();

}
}

class B extends A
{

public String x = "B.x";

public String getX() { return x; }
public String getY() { return y; }

}

class C extends A
{

private String y = "C.y";
public String x = "C.x";

public String getY() { return y; }
}

Just for reference, here are the relevant methods of the List and ArrayList types:

public interface List<E> extends Collection<E>
{

public void add(E o);
public E get(int i);

}

public class ArrayList<E> implements List<E>
{

// ...
}

6

4. Recursion [10 pts] What text is output during the method call foobar(86)?

public void foobar(int x) {
System.out.println("result: (" + foo(x) + ")");

}

public int foo(int x) {
if(x <= 0) return 1;

System.out.println("foo(" + x + ")");
return 1 + bar(x-42) + foo(x/4);

}

public int bar(int y) {
if(y <= 0) return 1;

System.out.println("bar(" + y + ")");
return 1 + foo(y-42) + bar(y/4);

}

Answer:
Here is the call tree:

This yields the following output:

foo(86)
bar(44)
foo(2)
bar(11)
bar(2)
foo(21)
foo(5)
foo(1)
result: (17)

7

5. Grammars and Parsing [15 pts]

Recall the grammar for the InfoStructure language:

value → struct | array | NUMBER | STRING
struct → NAME OPEN PAR attr list CLOSE PAR
attr list → attr attr tail | ε
attr tail → COMMA attr attr tail | ε
attr → NAME EQUALS value
array → OPEN BRACE value list CLOSE BRACE
value list → value value tail | ε
value tail → COMMA value value tail | ε

Draw the parse tree that shows that the following is a valid InfoStructure document:

State(name = "New York", cities = {"New York", "Ithaca"})

You may abbreviate the single-character tokens (e.g. write { instead of CLOSE BRACE).

Answer:

8

