
Binary search runs in O(log n) time.

Michael George

Tuesday March 29, 2005

This is a proof that binary search runs in O(log n) time. Here is the code:

binsearch (A, x, a, b)
if b = a then

return false
m← b−a

2
+ a

if A[m] > x then
return binsearch (A, x, a,m)

else if A[m] = x then
return true

else if A[m] < x then
return binsearch (A, x, m, b)

Let C be the amount of required to run all of the code in the procedure
except for the two recursive calls, and let T (n) be the total amount of time
required to run the procedure when b−a = n. I claim that T (n) ≤ C log n+
T (1) for all n ≥ 1.

I will prove this by strong induction. The base case (when n = 1) is clear:

C log 1 + T (1) = 0 + T (1) = T (1)

Now, choose a particular n > 1. For our inductive hypothesis we will
assume that for all k < n, that T (k) ≤ C log k + T (1).

How long does binsearch take to run if b − a = n? Well, there are
three possibilities: we could take the first branch of the if statement (i.e.
A[m] > x), we could take the second branch (A[m] = x), or we could take
the third branch (A[m] < x).

1



In the first of these possibilities, we need at most C time to execute
everything other than the recursive calls, and we’ll need T (m − a) time to
do the recursive call. So:

T (n) ≤ C + T (m− a)

= C + T

(
b− a

2
+ a− a

)

= C + T

(
b− a

2

)

By our inductive hypothesis, since b−a
2

< b− a, we can reduce this to

T (n) ≤ C + T

(
b− a

2

)

≤ C +

(
C log

(
b− a

2

)
+ T (1)

)
= C + C log(b− a)− C + T (1)

= C log(n) + T (1)

If we’re in the second case, and we don’t make any recursive calls, then
all we do is return true. In this case, we take at most C amount if time, and
since n > 1,

T (n) ≤ C ≤ C log n + T (1)

Finally, we could take the third branch (i.e. A[m] could be less than x).
In this case the total amount of time will be T (n) ≤ C + T (b−m). Since

b−m = b−
(

b− a

2
+ a

)
=

b− a

2

we see that that T (n) = C + T
(

b−a
2

)
so this case works out exactly like the

first case.
Since these are all possible executions, and in all three cases we have used

up at most C log n + T (1) time, we have shown that T (n) ≤ C log n + T (1)
by strong induction.

At this point, we see that if n > 1, that T (n) ≤ C log n + T (1). Does
this show that T (n) is O(log n)? The answer is yes, but it’s a little work.
We want to find a witness pair 〈c, n0〉 such that for all n > n0, T (n) is less

2



than c log n. We can guarantee this if we just force C log n + T (1) < c log n
since we know that T (n) is less than or equal to C log n + T (1). We’ll start
by choosing c bigger than C, say C + 1. Then we can solve:

C log n + T (1) < c log n

⇐⇒
T (1) < (c− C) log n

⇐⇒
T (1) < log n

So as long as n > 2T (1), we see that T (n) < c log n. Thus, our witness pair is
〈C + 1, 2T (1)〉, and we can conclude that T (n) is O(log n).

3


