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1. The Gist

• Graphs are trees with nodes that may create cycles

• set of edges (which may have weights and/or directions)

• set of verticies (or nodes)

• |V| = size of V, |E| = size of E

• generalization of many other data structures!

• example: 

•
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1.1 Directed Graphs

• also called digraphs
• G = (V,E)

• edges have 1 direction

• write edge as ordered pair (s,d) (source, destination) 
or s→d

• an edge may have node connect to itself (s==d)

• for 2-way direction, use another edge

• example:

1.2 More Directed Graphs Terms

• adjacency: for (a,b), b is adjacent to a because there is an 
edge connecting b to a (reverse is not true, because of 
directed graph)

• out-edges of node n: set of edges whose source is n

• out-degree of node n: number of out-edges of n

• in-edges of node n: set of edges whose destination is n

• in-degree of node n: number of in-edges of n
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Vertices = V = {A,B,C,D}

Edges = E = 

{(A,B),(B,C),(A,D),(A,C),(C,D),(D,C)}

Directed Graph G = (V,E)

Example: Edges (D,C) and (C,D)

are different!

B
C

D

A

adjacency

out-edge

out-degree

in-edge
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1.3 Continuing Directed Graph Terms

• path: sequence of edges in which destination node of an 
edge is source node of next edge in sequence; also, set of 
vertices that satisfy the same property
ex) edge def: (A,B),(B,C),(C,D)
ex) node def: A,B,C,D

• length of path: number of edges

• cost of path: sum of weights of edges on path; some 
references might lump this notion in with length

• source of path: source of first edge on path

• destination of path: destination of last edge on path

• reachability: nodes n is reachable from node m is there is 
a path from m to n (might have many paths between 
nodes)

• simple path: a path in which every node is the source and 
destination of at most two edges on the path (path does not 
cross vertex more than once)

1.4 Cycles

• cycle: a simple path whose source and destination nodes 
are the same

• length of cycle: length of path (depends on choice of nodes 
or edges for description)

• loop: path (a,b),(b,a) (edges) or (a,a) (nodes)
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2. More Graph Types/Qualities

2.1 Undirected Graphs

• edges have no arrows, so use set for edges: {a,b}

• can go any direction on edge

• nodes cannot form loops ( {a,a} becomes just {a})

2.2 Directed Acyclic Graphs

• also called DAGs

• digraph with no cycles

• note: trees are DAGs (but not vice versa)

2.3 Connected Graphs

• a graph with path between every pair of distinct verticies

• disconnected graph includes “lone wolf” nodes (no edges)

2.4 Complete Graphs

• edge between every pair of distinct vertex

2.5 Labeled Graphs

• attach additional info to nodes and/or edges

• weights/costs: values on edges (best/worst edges)

- edge ex) choosing shortest/quickest/best roads to take 
to get between towns

- node ex) importance of reaching certain towns (“fun 
quotient”)

• also called weighted graphs

2.6 Trees?

• yes, directed acyclic graphs

• see Tree notes for pretty much the same definitions of 
vertex and edge

5 6

7 8



2.7 Sparse and Dense Graphs

• sparse: not many edges

-
- ex) graph with same number of edges emanating from 

nodes has , so 

• dense: many edges

-  essentially on the order of 
- see pg. 546 DS&A (Def 16.6) for more precision

3. Representations

3.1 Implicit

• rules/model creates a network of nodes/edges

• ex) puzzle moves

- each move makes a new puzzle
- treat each state as a node
- so, rules implicit define a graph

• common for games!
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3.2 Explicit

• define all nodes V and edges E ahead of time

• want system to represent edges

• why? it’s the “biggest problem”:

- G = (V,E) and each edge e in E is a pair (v1,v2)
- most edges possible? |V|^2 

(form pairs from all nodes)
- most sets of edges possible? 2^(|V|^2)

• so, use container to represent edges

- adjacency matrix
- adjacency list

3.3 Adjacency Matrix

• adjacency matrix

• terms
: node i;  node j

: edge between nodes i ( ) and j ( ) 

belongs to set of edges 

: weight of edge between nodes i and j

• : the matrix (rectangular 2x2 array) as rows (i) and 

cols (j); coords correspond to nodes i and j

Ai j

wij vi vj,{ } E∈

0 otherwise



=

vi vj

vi vj,{ } E∈ vi vj

E

wij

Ai j
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3.4 Adjacency List

• adjacency list: linked list of nodes adjacent to a node

• need  lists

3.5 graph types to develop:

• undirected

• directed

• weighted

3.6 Undirected  
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Use array A of lists:
A stores a linked list of nodes
no edge implied by order in list
nodes must be adjacent to A
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3.7 Directed  3.8 Weighted

• assuming also weighted

• : cost or weight of edge from node i to node j  
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Use array A of lists:
Ai stores a linked list of nodes
no edge implied by order in list
nodes must be adjacent to Ai
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Use array A of lists: include weights
List for i contains j,w for edge (i,j)
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3.9 Choice of AM or AL?

• Adjacency Matrix

- uses  space

- can answer “is there an edge from i to j?” in  
time

- enumerating all nodes adjacent to i:  (find all 
nodes j in row for i)

- could be sparse because of wasted space (0s)
- better for dense graphs (lots of edges)!

• Adjacency List

- uses O(|V|+|E|) space (|V| for i nodes, |E| for j nodes 
emanating from each i node)

- can answer question “is there an edge from i to j?” in 

 time

- enumerating all nodes adjacent to i:  per adjacent 
node in linked list

- better for sparse graphs (few edges)!

4. Interesting Problems

4.1 Paths

• find ways to reach/find/collect/organize information from 
network of nodes

• focus of a lot of research!

4.2 Reachability

• is there a path from a given node to another node?

• ex) find the solved state of N-Puzzle from scrambled state

4.3 Minimal Path

• find the shortest path from a node to another

• find the shortest path from every node to another

• use weights to find min/max distances

4.4 Cycles

• ex) Traveling Salesman problem

• find the smallest length cucle that passes through all nodes

• no one knows if there is an efficient algorithm for this
(NP/NP-complete problems)

O V
2( )

O 1( )

O V( )

O E( )

O 1( )

5. Exercises

• Show all edges and verticies of a 2x2 N-Puzzle.

• Demonstrate a scenario/game/model that forms an implicit 
graph.

• Demonstrate why we use edges for explicit representations 
of graphs.

6. Implementation

6.1 Implicit

• can use containers to store node and edge info

• a bit too problem specific, though effective

6.2 Explicit

• Adjacency Matrix - left as exercise

• Adjacency List

- using linked list to allow for flexible building
- kind of gives implicit building by allowing for node/

edge creation “on the fly”

• focus on digragh, but could be weighted

- Sections 3, 4, 5, 6
- many methods left out – will see for graph problems
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7. Verticies

7.1 Fields

• label: we like to have names, numbers, …

• edges: collection of all emanating edges from the current 
vertex

• visited: need later to tag vertex for searching…

• sometimes includes cost (cost to get here from 
somewhere)

7.2 Constructor

• set label

• create edges adjacency list (AL)

7.3 Methods

• addEdge: add to AL

• equals: need for path checking

• more?

import java.util.*;

public class Vertex {

private Object label;
private LinkedList edges; // adjacent edges 
private boolean visited; // tag

public Vertex(Object o) {
label = o;
edges = new LinkedList();

}

public void addEdge(Edge e, int weight) {
Vertex source = this;
Vertex dest = e.getDest();
edges.add(new Edge(source,dest,weight));

}

public void addEdge(Edge e) { 
addEdge(e,0); 

}

public boolean equals(Vertex other) {
return label.equals( ((Vertex)other).label );

}

public String toString() { 
return label.toString();

}

public Collection getEdges() { return edges; }

} // Class Vertex

8. Edges

8.1 Fields

• source: s->d, the node from which edge emanates

• dest: actually, all you need is this since Vertex keeps track 
of adjacent edges of source

• weight: could make double (sometimes called cost)

8.2 Constructors

• build edge from s->d

• can default to weight of 0 to handle unweighted graphs

8.3 Methods

• equals and compareTo:

- many algorithms want to know shortest path
- need to compare costs of going in different directions

• toString: "source-weight->dest"

• more? 

public class Edge implements Comparable {

private Vertex source; // s (s->d)
private Vertex dest;   // d
private int weight; // also called cost

public Edge(Vertex source, Vertex dest, int weight) {
this.source=source;
this.dest=dest;
this.weight=weight;

}

public Edge(Vertex source, Vertex dest) {
this(source,dest,0);

}

// getters and setters not shown

public boolean equals(Object other) {
Edge e = (Edge) other;
return weight == e.weight;

}
    

public int compareTo(Object other) {
Edge e = (Edge) other;
return (int) (weight-e.weight);

}

// Stringify as (d,--w->,s):
public String toString() {

return "("+source+"-"+weight+"->"+dest+")";
}

} // Class Edge
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9. Directed Graphs

9.1 Fields

• verticies dictionary:

- key-val pairs of (VertexName,Vertex)
- each Vertex points to its adjacency list!

• edgeCount 

9.2 Constructors

• set verticies to LinkedHashMap

• maintains order of nodes in order created

• nodes must be created before edges this way!

9.3 Methods

• use vertex names/labels!

• addVertex: put Vertex in Map: (name, Vertex)

• addEdge: connect s and d nodes (they must exist!)

import java.util.*;
public class Digraph {

private Map verticies; // dictionary of nodes
private int edgeCount; // number of edges

public Digraph( ) {
verticies = new LinkedHashMap();

}
    

// Add vertex to map
public void addVertex(Object name) { 

verticies.put(name, new Vertex(name));
}

    
// Adds edge (source and dest node must exist!):
public void addEdge(Object s, Object d, int weight) { 

// Key is NAME of Vertex
// Val is THE Vertex
// So, get keys of s and d and use them to
// retrieve their vals (their Verticies):
Vertex source = (Vertex)verticies.get(s);
Vertex dest = (Vertex)verticies.get(d);  

// Create edge between source and dest:
s.addEdge(new Edge(source,dest,weight)); 
edgeCount++;

}

public void addEdge(Object source, Object dest) {
addEdge(source,dest,0);

}

// Stringify: return edges with 
// their adjacency lists:
public String toString() {

String s = "";

Iterator it=verticies.keySet().iterator();

while(it.hasNext()) {

// current node label:
Object key = it.next(); 

// current Vertex:
Vertex val = (Vertex) verticies.get(key);

// build string for current vertex in Map:
s += "[" + val + "]" + "-->";
s += val.getEdges();
s += "\n";

}

return s;

} // Method toString
    
} // Class Digraph

10. Demonstration

10.1 Code

public class TestDigraph {

public static void main(String[] args) {

Digraph g = new Digraph();
g.addVertex("A");

g.addVertex("B");
g.addVertex("C");
g.addEdge("A","B");
g.addEdge("A","C");
g.addEdge("B","C");
System.out.println(g);

}
}

10.2 Output

[A]-->[(A-0->B), (A-0->C)]
[B]-->[(B-0->C)]
[C]-->[]
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11. Exercises

• Demonstrate why we use edges for explicit representations 
of graphs.

• Develop Vertex, Edge, Digraph, and 
TestDigraph classes for the adjacency matrix 
approach. You should develop methods to handle I/O in 
reading in a grid of adjacencies to help build a graph.

• Remove the source node field from class Edge and 
modify the remaining classes as necessary. This design is a 
bit more common than the examples given to you.

• Rewrite Digraph’s addEdge such that it does not 
assume that the nodes exist. You may either throw an 
exception or perhaps create more nodes….

• Graphical graph: This was once a final project long 
ago…develop a GUI tool that draws a graph that a user 
creates, either via the GUI or as a translation from the 
collection that contains the verticies and edges. A 
rudimentary application would naively draw each vertex 
according to a pre-determined grid and then draw the 
edges using the given vertex geometry.

12. Motivation

12.1 Paths

• find ways to reach/find/collect/organize information from 
network of nodes

• focus of a lot of research!

12.2 Reachability

• is there a path from a given node to another node?

• ex) find the solved state of N-Puzzle from scrambled state

12.3 Minimal Path

• find the shortest path from a node to another

• find the shortest path from every node to another

• use weights to find min/max distances

12.4 Cycles

• ex) Traveling Salesman problem

• find the smallest length cucle that passes through all nodes

• no one knows if there is an efficient algorithm for this
(NP/NP-complete problems)

13. Search

• kind of handy that we have explicit graph

• why? 

- verticies created ahead of time
- stored in hash table
- so, only need to look up a node…

public boolean search(Object o) {
if (verticies.get(o)==null)

   return false;
return true;

}

14. Traversal

14.1 Traversal

• like search for node, but now search for everything

• visit nodes

• also called walk

• see lists, trees, …

14.2 Why?

• want to find things

• want to way to something

• want to process everything

14.3 Types

• DFS (Digraph.java)

• BFS (Digraph.java)

• topological sort

• random

• more?

14.4 Applications

• test for cycles

• connectedness
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14.5 DFS

• depth-first search

• process:

- start with origin
- visits a neighbor
- visits neighbor of neighbor and so on…
- stops when can’t find unvisited neighbor
- backs up to previous node and searches for new 

unvisited neighbor and so on…

• results in visiting all the nodes in a connected graph

• the DFS path never repeats a node

• show/print path as { v1, v2, … vn }:

- left side (v1) is origin
- each visited node inserted to right

public SeqStructure getDFS(Object origin) {

resetVerticies();
SeqStructure toDo = new StackAsList();
SeqStructure path = new QueueAsList();
 
Vertex originVertex = (Vertex)verticies.get(origin);
originVertex.visit();
toDo.put(originVertex);
path.put(originVertex);

while(!toDo.isEmpty()) {
Vertex currentVertex = (Vertex)toDo.get();
Iterator edges = currentVertex.getEdgeIterator();

 boolean found = false;
 Vertex nextVertex = null;
 while (!found && edges.hasNext()) {

Edge currentEdge = (Edge) edges.next();
Vertex trialVertex = currentEdge.getDest();
if(!trialVertex.isVisited()) {

found = true;
nextVertex = trialVertex;

}
 }

if (nextVertex != null) {
toDo.put(currentVertex); 
nextVertex.visit();
toDo.put(nextVertex);
path.put(nextVertex);

}
}
return path;

}

14.6 BFS

• breadth-first search (called level-order in trees)

• process:

- visit origin (record this node)
- visit each of origin’s neighbors (record each node in 

order visited)
- visit neighbors of each neighbor (record those nodes) 

and so forth

• show/print path as { v1, v2, … vn }:

- left side (v1) is origin
- each visited “level” is inserted to right of previous 

node
- so might wish to think as { {level 1}, {level 2}, … }

public SeqStructure getBFS(Object origin) {

resetVerticies();
SeqStructure toDo = new QueueAsList();
SeqStructure path = new QueueAsList();
 
Vertex originVertex = (Vertex)verticies.get(origin);
originVertex.visit();
toDo.put(originVertex);
path.put(originVertex);

while(!toDo.isEmpty()) {
    Vertex currentVertex = (Vertex)toDo.get();

    for (Iterator edges = 
currentVertex.getEdgeIterator(); 
edges.hasNext(); ) {

Edge currentEdge = (Edge) edges.next();
Vertex nextVertex = currentEdge.getDest();

if(!nextVertex.isVisited()) {
nextVertex.visit();
toDo.put(nextVertex);
path.put(nextVertex);

}
 }

}

return path;

}
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14.7 Example

• see TestDigraph.java

• contains more examples

Digraph g = new Digraph();
g.addVertex("A");
g.addVertex("B");
g.addVertex("C");
g.addVertex("D");
g.addVertex("E");
g.addVertex("F");
g.addVertex("G");
g.addEdge("A","B");
g.addEdge("A","C");
g.addEdge("B","D");
g.addEdge("B","E");
g.addEdge("C","F");
g.addEdge("C","G");

System.out.println(g.getBFS("A"));
System.out.println(g.getDFS("A"));

/*
BFS: [A B C D E F G]
DFS: [A B D E C F G]

*/ 

15. Shortest Path Algorithms

15.1 Assumptions

• edge-weighted graph (unitary or more)

• weight is a cost of using an edge

• graphs may be directed or undirected

• non-negative edge weights!

15.2 Why?

• want to find best/cheapest/least effort between points

• travelling is classic example

15.3 Terms

• weighted path length = sum of weights on path

• unweighted path length = sum of paths (weights = 1)

15.4 SSSP

• to find shortest path from A to B, need to find shortest 
path from A to all other nodes

- why? another node might provide a better path
- see DS&A 16.4.1: basically, knowing all the path 

lengths might mean you can find a shorter route

• this problem called single-source shortest path problem

16. SSSP for Unweighted Graphs

16.1 The Gist

• based on BFS

• all traverse trees, keep track of increasing path lengths to a 
particular node

• algorithm finds only 1 path if multiple paths are smallest 
and have same value

• will need to modify classes again

- need to find all paths to end node
- need to keep track of length to current node

(so can have length values after traversal)
- so, need to keep track of previous node
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16.2 Process for SSSP

• finding shortest path from A to B means counting edges

• smallest number of edges gives shortest path

• since starting at A, start counting @ A:

• try to find final node, so count edges while looking:

• which will get the smallest node cost if check when reach 
final node and backtrack

16.3 Path Cost

• for path to node v, distance to v is Dv

• for v → w, Dw = Dv + 1

• helpful convention: default node cost for SSSP: 
Dw =  

• we’re not really using the Dw convention, though many 
implementations do (we have visited, which is our 
way of tagging visited nodes)
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start
@ A
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start
@ A

0
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∞

16.4 Algorithm (BFS for Destination)

• start with origin

• put origin in Q

• not done, so take first node from Q

• find edges from node

• for each node, if it’s not already been visited

- tag it, set cost, set prev node, put in Q
- if the node is dest, stop processing!

16.5 Example: Part 1–Build Q

origin: A; end: I
get A: Q = [A]
get A: Q = [ ]

process (AD),(AE),(AB) (nodes D,E,B)
for each node, put in Q [D,E,B], tag, set cost (1),
set prev (A), check if dest (no for all)

get D: Q = [E,B]
process (DG) (node G)
tag G, put in Q [E,B,G], set cost (G=2), 
set prev (D), check if dest (no)

get E: [B,G]
process (EH), (EF) (nodes H,F)
tag nodes, put in Q [B,G,H,F], set costs (H=F=2)
& prev (E), check if dest (no for all)

get B: [G,H,F]
nothing new -- no processing

get G: [H,F]
process (GH)
nothing new (H already visited)

get H: [
tag I, put in Q [H,F,I], set cost (3), set prev (H)
check if dest -- yes! STOP!

A D G

B E H

C F I
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16.6 Example: Part 2–Build Stack
put last vertex (end) into Stack: [I]
set last vertex to prev of last index: H
put last vertex into Stack: [H,I]
set last vertex to prev of last index: E
put last vertex into Stack: [E,H,I]
set last vertex to prev of last index: A
put last vertex into Stack: [A,E,H,I]
no more prev (prev is null)
return Stack, which contains shortest path

16.7 Code
public SeqStructure unweightedShortestPath(Object origin, Object end) {

resetVerticies();
boolean done = false;
SeqStructure toDo = new QueueAsList();
SeqStructure path = new StackAsList();

Vertex originVertex = (Vertex)verticies.get(origin);
Vertex endVertex = (Vertex)verticies.get(end);
originVertex.visit();
toDo.put(originVertex);

while(!done && !toDo.isEmpty()) {
Vertex currentVertex = (Vertex)toDo.get();

for (Iterator edges=currentVertex.getEdgeIterator();
!done && edges.hasNext(); ) {

Edge currentEdge = (Edge) edges.next();
Vertex nextVertex = currentEdge.getDest();

if(!nextVertex.isVisited()) {
nextVertex.visit();
nextVertex.setCost(1+currentVertex.getCost());
nextVertex.setPrev(currentVertex);
toDo.put(nextVertex);

}

if (nextVertex.equals(endVertex))
done = true;

} // end for
 
} // end while

path.put(endVertex);
while(endVertex.hasPrev()) {

endVertex = endVertex.getPrev();
path.put(endVertex);

}
return path;

}

17. Exercises

• Use recursion to rewrite (and simplify) the DFS code. You 
might need a helper method.

• Write a program that finds all DFS/BFS paths in a graph. 
Is this problem related to an implicit graph search

• Rewrite the shortest path algorithm such that it uses the 
convention of “infinite” costs as the check for stopping 
instead of tagging of nodes.

Try to figure out an algorithm for finding the shortest path when 
there are edge weights.

18. Overview:

• shortest path algorithm for weighted graph
(Dijkstra’s algorithm)

• all pairs source shortest path
(Floyd’s algorithm)

• minimum cost spanning trees
(Prim’s algorithm, Kruskal’s algorithm)
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19. Shortest Path for Weighted Graphs

19.1 Assumptions

• could be directed or undirected

• non-negative weights

19.2 Dijkstra’s Algorithm

• very famous

• example of greedy algorithm

• on-line demo:
http://www-b2.is.tokushima-u.ac.jp/~ikeda/suuri/dijkstra/
Dijkstra.shtml

19.3 Wordy Gist: Based ON BFS

• BFS: visit the nodes by “levels” or “layers”

- put new (unvisited) nodes in Q
- look at each node at each layer
- process each node and repeat
- don’t re-process already-visited nodes

• New twist!

- don’t treat all unvisited nodes as equals
- want smallest accumulation of weights
- so, need to sum weights along the way and maybe 

pick a different node than what’s in front of the Q

19.4 Physical Gist     

Want shortest path from A to I

Imagine graph is weights and strings, in 
which strings are cut to scaled lengths

Pick up weights one at a time

Pick up A

String becomes tight first at B

record: A→B

Pick up B

String becomes tight first at E 

record: A→B→E 
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B E H

C F I
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String now becomes tighter at D

Why? After E comes F or H, each of 
which is longer than D

record: A→D

We could have gotten to E via A

Pick up D, followed by F

But, G will be in “next round”

so, record: A→D→G

Eventually:

record: A→D→G→H→I

Forms a tree

A D G

B E H

C F I
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19.5 Pseudocode Gist: Version 1

• Longish algorithm that uses cost in organizing priority 
queue to choose nodes

• a bit expanded on “wordy gist” from before:

- pick the highest priority node (the smallest dist)
- tag the node, record previous, update cost:

PQ element: <node,accumulating cost>
- repeat until no more PQ or no more unvisted nodes

(note: tagging happens after extract from PQ)

• Visualization: 

19.6 Code Gist: Version 1
// from dijkstra1 in Digraph.java:

resetVerticies();
boolean done = false;
SeqStructure toDo = new Heap(edgeCount); // use min heap!
SeqStructure path = new QueueAsList();// should use stack

Vertex originVertex = (Vertex)verticies.get(origin);
Vertex endVertex = (Vertex)verticies.get(end);
originVertex.setPrev(null);
toDo.put(new MinPQElement(originVertex,0));

while(!done && !toDo.isEmpty()) {
MinPQElement entry = (MinPQElement) toDo.get();
Vertex currentVertex = (Vertex) entry.getItem();
// code not shown

} // end while

path.put(endVertex);
while(endVertex.hasPrev()) {

endVertex = endVertex.getPrev();
path.put(endVertex);

}
return path;

A
DB

C

1

2

3

3 E
F

4

1

Current
PQ 

Entry

Current
Node

Adjacent
Nodes

PQ
Previous

Node

<A, 0> A [ ]
B [<B,1>] A
C [<B,1>,<C,2>] A

<B,1> B [<C,2>]
D [<C,2>,<D,4>] A

<C,2> C
E [<D,4>,<E,5>] C

<D,4> D
F [<E,5>,<F,8>] D

<E,5> E
F [<F,6>,<F,8>] E

<F,6> F
[<F,8>] F

19.7 Pseudocode Gist: Version 2

• Data:

- s: start vertex
- c(i,j): cost from i to j

- dist(n): distance from s to n (initially )
- PQ to store neighboring nodes and choose the one 

with min cost at each “layer”
(note: PQ size is edgeCount -> max # of adj nodes)

• Algorithm:
dist(s) <- 0
while (some vertices are unvisited)

v <- unmarked vertex with smallest dist
 (get from the PQ)

tag v
for each node w adjacent to v

dist(w) = min(dist(w),dist(v)+c(v,w))
end for

end while

19.8 Code Gist: Version 2
public SeqStructure dijkstra3(Object origin,Object end) {

resetVerticies(Integer.MAX_VALUE);
SeqStructure toDo = new Heap(edgeCount); 
SeqStructure path = new QueueAsList();

Vertex originVertex = (Vertex)verticies.get(origin);
Vertex endVertex = (Vertex)verticies.get(end);

originVertex.setPrev(null);
originVertex.setCost(0);
toDo.put(new MinPQElement(originVertex,0));

while(!toDo.isEmpty()) {
MinPQElement entry = (MinPQElement) toDo.get();
Vertex currentVertex = (Vertex) entry.getItem();
currentVertex.visit();

for (Iterator edges=currentVertex.getEdgeIterator(); 
edges.hasNext(); ) {

Edge currentEdge = (Edge) edges.next();
Vertex nextVertex = currentEdge.getDest();
int nextCost = currentEdge.getWeight() + 

currentVertex.getCost();

if (nextVertex.getCost() > nextCost ) {
nextVertex.setCost(nextCost);
nextVertex.setPrev(currentVertex);
toDo.put(

new MinPQElement(nextVertex,nextCost));
}

}

}
path.put(endVertex);
while(endVertex.hasPrev()) {    

endVertex = endVertex.getPrev();
path.put(endVertex);

}
return path;

}

∞
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19.9 Proof Gist

• Induction on iterations of while loop

- each iteration moves one new node into lifted set
- do induction on set of nodes ordered in the sequence 

in which they get put into the lifted set

• Induction:

- base case: path from origin to self is 0
- inductive hypothesis: assume that the shortest paths to 

all nodes currently in the lifted set have been 
computed correctly

- inductive hypothesis: the next node that gets lifted is 
correct

• see Panels 16–19 at http://www.cs.cornell.edu/courses/
cs211/2002sp/Lectures/graphs-quad.pdf

19.10 Run-time Analysis for Adjacency List

• dominant operation of method is while loop (processing 
unvisited nodes)

• time for processing each vertex:

- each vertex processed once
- all edges from a vertex might be processed
- so, for each node, add up time for each edge
- so, O(|V| + |E|) (see BFS time)

• PQ ops?

- worst case: each edge has a node to queue and 
dequeue (see for loop and inner if)

- so, PQ has max length of |E|
- from heap: put is O(log n), get is O(log n)
- so, adding each edge’s contribution gives

O(|E| log |E|)

• total: O(|V| + |E| log |E|)

19.11 Adjacency Matrix

• O(|V|^2 + |E| log |E|)

20. All Pairs Shortest Path

20.1 Problem

• given edge weighted graph

• for each pair of verticies find length of shortest path

20.2 One Solution

• run Dijkstra’s algorithm |V|+ times

• use each vertex as the origin

20.3 Floyd’s Algorithm

• use adjacency matrix

• see 16.4.2 in DS&A

21. Spanning Trees

21.1 Interesting Thing About Traversals

• BFS, DFS don’t repeat -> no cycles

• can backtrack to find a new unvisited node, but won’t 
repeat it

• what does that look like?

• a rooted tree!

• ex) BFS = {A,B,D,E,G,H,F,I,C}

A D G

B E H

C F I
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21.2 Spanning Tree

• effectively a subset of a graph:

- all nodes sames as in G
- tree edges must be graph edges (but nec all!)
- connected
- acyclic

• constructing?

- pick a starting edge
- add edges with unvisited dest nodes

21.3 Minimal Spanning Tree

• given: undirected, weighted graph

• weight of spanning tree = sum of tree edge weights

• minimum spanning tree:

- any spanning tree with smallest weight
- could have many such trees

21.4 Application

• find a cheap way to connect a bunch of nodes

- as in something travelling an entire graph
- plane needs to travel to a set of cities
- wants cheapest path to take that still hits all cities

21.5 Compare to SSSP

• SSSP: shortest path to a node
what’s cheapest way to get from A to Z using nodes 
{A,…,Z}

• MST: smallest sum of weights connecting each node
what’s cheapest way to connect all nodes {A,…,Z}?

A

B C

44

1

A

B C

44

1

A

B C

44

1

weighted, undirected graph

SSSP for A →C: {A,C}
Tree: { {A,B}, {A,C} }

MST for graph
Tree: { {A,B}, {B,C} }

21.6 Prim’s Algorithm

• modify Dijsktra’s Algorithm:

- put edges in PQ
- associate edges with length of edge (don’t add costs)
- otherwise, algorithm is the same

21.7 Kruskal’s Algorithm

• add edges by increasing order of weights

• not allowed to add edges that form cycles

22. Exercises

• Modify the heap code to use a minimum heap.

• Modify the heap code to provide a sorted string for 
describing a priority queue.

• Prove by induction that Dijkstra’s algorithm is correct.

• Implement Prim’s algorithm.
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