Cs211 1. The Gist
CRAPHS REVIEW « Graphs are trees with nodes that may create cycles
DAVID |. SCHWARTZ i ] ) )
COMPILED FROM SPRING 2003 CS211 LECTURE NOTES « set ofedges (which may have weights and/or directions
« set ofverticies (or nodes)
* |V| = size olV, [E| = size ofE
 generalization of many other data structures!
* example:
A
D
B
C
1 2
1.1 Directed Graphs 1.2 More Directed Graphs Terms

« also calleddigraphs
*+ G=(VB
» edges have 1 direction

 write edge as ordered pair (s,d) (source, desbimat
or s-»d

* an edge may have node connect to itself (s==d)
« for 2-way direction, use another edge

« adjacency: for (a,b), b is adjacent to a because there is
edge connecting b to a (reverse is not true, becalus
directed graph)

 out-edges of node n: set of edges whose source is n

 out-degree of node n: number of out-edges of n

« in-edges of node n: set of edges whose destination is n

* in-degree of node n: number of in-edges of n

» example:
adjacency
A Directed Graph G = (V,E) A out-edge
Vertices = V = {A,B,C,D} D
D out-degree
Edges=E =
B {(A,B),(B,C),(AD),(A,C),(C,D),(D.C}} B in-edge
c Example: Edges (D,C) and (C,D) c
are different! in-degree
3 4

an



1.3

Continuing Directed Graph Terms

* path: sequence of edges in which destination node of &
edge is source node of next edge in sequence;sasof
vertices that satisfy the same property
ex) edge def: (A,B),(B,C),(C,D)
ex) node def: A,B,C,D

* length of path: number of edges

» cost of path: sum of weights of edges on path; some
references might lump this notion in with length

» source of path: source of first edge on path

* destination of path: destination of last edge on path

 reachability: nodes n is reachable from node m is there i

a path from m to n (might have many paths between
nodes)

» simple path: a path in which every node is the source a
destination of at most two edges on the ppaith(does not
Cross vertex more than once)

A

il

)

14

Cycles
cycle: a simple path whose source and destination nod
are the same

length of cycle: length of path (depends on chofosodes
or edges for description)

loop: path (a,b),(b,a) (edges) or (a,a) (nodes)

2.2

More Graph Types/Qualities
Undirected Graphs

» edges have no arrows, so use set for edges: {a,b}
* can go any direction on edge
» nodes cannot form loops ( {a,a} becomes just {a})

Directed Acyclic Graphs

+ also called DAGs
« digraph with no cycles
* note: trees are DAGs (but not vice versa)

Connected Graphs

» a graph with path between every pair of distirerticies
« disconnected graph includes “lone wolf” nodes édges)

Complete Graphs

» edge between every pair of distinct vertex

2.5

2.6

Labeled Graphs

attach additional info to nodes and/or edges
welghts/costs: values on edges (best/worst edges)

- edge ex) choosing shortest/quickest/best roatiken
to get between towns

- node ex) importance of reaching certain townsr(“fu
guotient”)

also calledveighted graphs
Trees?

yes, directed acyclic graphs
see Tree notes for pretty much the same defirgtafn
vertex and edge

es




2.7 Sparse and Dense Graphs 3. Representations
* sparse: not many edges 3.1 Implicit
- |El = O(|VD ) * rules/model creates a network of nodes/edges
- ex) graph with same number of edges emanating fram | ex) puzzle moves
nodes hask| = kIl , sfE| = O(IV)) - each move makes a new puzzle
A - treat each state as a node
v =4 - so, rules implicit define a graph
D « common for games!
- edges) -
. |E| (2 odo (4nodes) = 8edges
C
» dense: many edges
- |E| essentially on the order NIZ
- see pg. 546 DS&A (Def 16.6) for more precision
A
IVl =
° |g = 16
B
C
9 10
3.2  Explicit 3.3 Adjacency Matrix
« define all node¥ and edge& ahead of time « adjacency matrix
» want system to represent edges W, {v, Vj} 0OE
. 2 S 111784 ”. .. =
why? it's the “biggest problem”: . . i {O otherwise
- G = (VE) and each edge e knis a pair (v1,v2)
- most edges possible?’}2 * terms
(form pairs from all nodes) v; : node i;vj node j
- ible?
most sets of edges possible? 2'E) {v;, vj} 0 E: edge between nodesv; () and/jj ()

* S0, use container to represent edges

- adjacency matrix
- adjacency list

belongs to set of edgés

W : weight of edge between nodes i and |
. A i the matrix (rectangular 2x2 array) as rows (i)l a

cols (j); coords correspond to nodes i and j

1"

12




3.4

Adjacency List
adjacency list: linked list of nodes adjacent tooale
need|V| lists

3.6  Undirected

_ {1 {vi,vj} OE
J 0 otherwise

Use array A of lists:
A stores a linked list of nodes

3.5 graph types to develop: nodesmuet gidaz?/a?:reﬁrt:)n/lm
. i
undirected iN_A B C
. A 111
directed sl1l 11
weighted clifa| |1
D|1 1
A
D
B
C
13 14
3.7 Directed 3.8 Weighted

Use array A of lists:
Al stores a linked list of nodes
no edge implied by order in list
nodes must be adjacent to Ai

_ {1 (vi,vj)DE
E 0 otherwise

i

« assuming also weighted

* w;; . cost or weight of edge from node i to node |

I

Use array A of lists: include weights

, w. (vi,v.)OE
iNABCD i = 1] "7 List for i contains j,w for edge (i,j)
N I 1o otherwise
]
c 1 1 iNNABCD A | AT B[ I+C[2] ]
D 1 Al1]s]2]3 B[X
B c| —MEADBEKX
A C 4 6 D
D 7
D
B
C
15 16




3.9 Choice of AM or AL? 4. Interesting Problems
» Adjacency Matrix 4.1 Paths
- usesO(|V2‘) space « find ways to reach/find/collect/organize infornmatifrom
- can answer “is there an edge from i to j?2'0(i) network of nodes
time « focus of a lot of research!
- enumerating all nodes adjacent t@i]V|) (findall | 42 Reachability
nodes j in row for i) . isth th f . det th de?
- could be sparse because of wasted space (0s) IS gre apath from a given hode fo another node:
- better for dense graphs (lots of edges)! « ex) find the solved state of N-Puzzle from scrasdidtate
» Adjacency List 4.3 Minimal Path
- USes O(,|V|+|E|) space.(|V| for i nodes, |E| furdes « find the shortest path from a node to another
emanating from each i node) « find the shortest path f det h
- can answer question “is there an edge from i'tinj? n e.s or es_ pa . rom eve.ry node to another
O(El) time  use weights to find min/max distances
- enumerating all nodes adjacent t@®(1) per adjacen#4  Cycles
node in linked list « ex) Traveling Salesman problem
- better for sparse graphs (few edges)! « find the smallest length cucle that passes thralighodes
* no one knows if there is an efficient algorithnn flois
(NP/NP-complete problems)
17 18
5. Exercises 6. Implementation
» Show all edges and verticies of a 2x2 N-Puzzle. 6.1 Implicit
. Demr(:nstrate a scenario/game/model that forms phditn « can use containers to store node and edge info
grapn. . ) « a bit too problem specific, though effective
» Demonstrate why we use edges for explicit reprasiems
of graphs' 6.2 EXp”Cit

» Adjacency Matrix - left as exercise
« Adjacency List
- using linked list to allow for flexible building
- kind of gives implicit building by allowing for roe/
edge creation “on the fly”
« focus on digragh, but could be weighted
- Sections 3,4, 5, 6
- many methods left out — will see for graph prokden

19

20



7.
7.1

7.2

Verticies
Fields

* | abel : we like to have names, numbers, ...

» edges: collection of all emanating edges from the cutren
vertex

* vi si t ed: need later to tag vertex for searching...

» sometimes includesost (cost to gehere from
somewhere)

Constructor

 setl abel
 createedges adjacency list (AL)

Methods

e addEdge: add to AL
» equal s: need for path checking

inport java.util.*;
public class Vertex {
private Object |abel;

private LinkedList edges;
private bool ean visited;

/| adj acent edges
/1l tag

public Vertex(Ohject o) {

| abel = o;
edges = new LinkedLi st ();
}
public void addEdge(Edge e, int weight) {
Vertex source = this;
Vertex dest = e.getDest();

edges. add(new Edge(source, dest, wei ght));

}

public void addEdge( Edge e) {
addEdge(e, 0);

publ i c bool ean equal s(Vertex other) {
return | abel . equal s( ((Vertex)other).label );
}

* more? public String toString() {
return |abel.toString();
}
public Collection getEdges() { return edges; }
} /1 Cdass Vertex
21 22
8. Edges public class Edge inplenents Conparable {
H private Vertex source; // s (s->d)
8.1 Fields private Vertex dest; /1 d
. rivate int weight; /1 also called cost
 source: s->d, the node from which edge emanates . ¢
« dest: actually, all you need is this since Velterps track public Edge(Vertex source, Vertex dest, int weight) {
. t hi s. source=source;
of adjacent edges of source thi's. dest =dest ;
. . this. wei ght =wei ght;
« weight: could make double (sometimes called cost) ) g g
8.2 Constructors public Edge(Vertex source, Vertex dest) {
t hi s(source, dest, 0);
* build edge from s->d }
 can default to weight of 0 to handle unweighteabpips I getters and setters not shown
8.3 Methods public bool ean equal s(Object other) {

* equal s andconpar eTo:

- many algorithms want to know shortest path
- need to compare costs of going in different dioexg

e toString:"source-wei ght->dest™"
* more?

Edge e = (Edge) other;
return weight == e.weight;

}

public int conpareTo(Object other) {
Edge e = (Edge) other;
return (int) (weight-e.weight);

}

/1 Stringify as (d,--w>,s):
public String toString() {

return "("+source+"-"+wei ght +"->"+dest +")";
}

} /1 dass Edge

23

24




9. Directed Graphs
9.1 Fields

» vertici es dictionary:

- key-val pairs of (VertexName,Vertex)
- each Vertex points to its adjacency list!

» edgeCount
9.2 Constructors

» setverti ci es to LinkedHashMap
* maintains order of nodes in order created
» nodesmust be created before edges this way!

9.3 Methods

* use vertex names/labels!
» addVert ex: putVert ex in Map: (nane, Vert ex)
» addEdge: connect s and d nodes (they must exist!)

inmport java.util.*;
public class Digraph {

private Map verticies; // dictionary of nodes
private int edgeCount; // nunber of edges

public Digraph( ) {
verticies = new Li nkedHashMap();
}

/1 Add vertex to map

public void addVertex(Object nane) {
verticies. put(name, new Vertex(nane));

}

/1 Adds edge (source and dest node nust exist!):
public void addEdge(Object s, Object d, int weight) {

/1 Key is NAME of Vertex

/1 Val is THE Vertex

/'l So, get keys of s and d and use themto

/1 retrieve their vals (their Verticies):
Vertex source = (Vertex)verticies.get(s);
Vertex dest = (Vertex)verticies.get(d);

/| Create edge between source and dest:
s. addEdge(new Edge(source, dest, wei ght));
edgeCount ++;

}

public void addEdge(Obj ect source, Object dest) {
addEdge(source, dest, 0);

25

26

/1 Stringify: return edges with
/1 their adjacency lists:
public String toString() {
String s ="";
Iterator it=verticies.keySet().iterator();

while(it.hasNext()) {

/'l current node | abel:
Obj ect key = it.next();

Il current Vertex:
Vertex val = (Vertex) verticies.get(key);

/1 build string for current vertex in Map:

s +="[" + val + "]" + "-->";
s += val . get Edges();
s += "\n";

}

return s;

} // Method toString

} /1 Class Digraph

10. Demonstration

10.1 Code

public class TestDigraph {
public static void main(String[] args) {

Di graph g = new Di graph();
g. addVertex("A");
addVertex("B");
addVertex("C");
addEdge(" A", "
addEdge(" A", "
addEdge("B", "
intl

)
"C');
E

n(g);

g
g
0 B’
0 c
g c

System out . pr

10.2 Output

[Al-->[(A-0->B), (A-0->0)]
[B]-->[(B-0->0)]
[a-->{1

27

28




11. Exercises

» Demonstrate why we use edges for explicit reprtasiens
of graphs.

» DevelopVert ex, Edge, Di gr aph, and
Test Di gr aph classes for the adjacency matrix
approach. You should develop methods to handlénl/O
reading in a grid of adjacencies to help build @pgr.

* Remove thesour ce node field from claskdge and
modify the remaining classes as necessary. Thigrlesa
bit more common than the examples given to you.

» RewriteDi gr aph’s addEdge such that it does not
assume that the nodes exist. You may either throw a
exception or perhaps create more nodes....

» Graphical graph: This was once a final projecglon
ago...develop a GUI tool that draws a graph thateat us
creates, either via the GUI or as a translatiomftbe
collection that contains the verticies and edges. A
rudimentary application would naively draw eachterr
according to a pre-determined grid and then draw th
edges using the given vertex geometry.

12. Motivation
12.1 Paths

« find ways to reach/find/collect/organize infornwatifrom
network of nodes

 focus of a lot of research!
Reachability

« is there a path from a given node to another node?
« ex) find the solved state of N-Puzzle from scrasdidtate

Minimal Path

« find the shortest path from a node to another
« find the shortest path from every node to another
 use weights to find min/max distances

12.4 Cycles

« ex) Traveling Salesman problem
« find the smallest length cucle that passes thralighodes

* no one knows if there is an efficient algorithmn flois
(NP/NP-complete problems)

29

30

13. Search

« kind of handy that we have explicit graph
* why?

- verticies created ahead of time

- stored in hash table

- so, only need to look up a node...

publ i c bool ean search(Cbject 0) {
if (verticies.get(o)==null)
return fal se;
return true;

14. Traversal
14.1 Traversal

« like search for node, but now search for everyghin
* visit nodes

* also called walk

* see lists, trees, ...

14.2 Why?

« want to find things
* want to way to something
« want to process everything

14.3 Types
« DFS Qi graph. j ava)
* BFS O graph.java)
* topological sort

e random
e more?

14.4 Applications

* test for cycles
* connectedness

31

32




145 DFS

* depth-first search
* process:

- start with origin

- visits a neighbor

- visits neighbor of neighbor and so on...

- stops when can't find unvisited neighbor

- backs up to previous node and searches for new
unvisited neighbor and so on...

* results in visiting all the nodes in a connecteapd
» the DFS path never repeats a node
» show/print path as { vl,v2, ... vn };

- left side (v1) is origin

- each visited node inserted to right

public SeqStructure get DFS(Object origin) {

resetVerticies();
SeqStructure toDo
SeqStructure path

= new StackAsList();

= new QueueAsList();

Vertex originVertex = (Vertex)verticies.get(origin);
originVertex.visit();

toDo. put (ori gi nVertex);

pat h. put (ori gi nVertex);

whil e(!'toDo.isEmpty()) {
Vertex currentVertex = (Vertex)toDo.get();
Iterator edges = currentVertex.get Edgelterator();
bool ean found = fal se;
Vertex nextVertex = null;
while (!found & edges. hasNext()) {
Edge current Edge = (Edge) edges.next();
Vertex trial Vertex = current Edge. get Dest ();
if('trialVertex.isVisited()) {
found = true;
next Vertex = trial Vertex;

}

if (nextVertex !'= null) {
toDo. put (current Vertex);
next Vertex. visit();
t oDo. put (next Vertex);
pat h. put (next Vertex);
}
}

return path;

33 34
14.6 BFS public SeqStructure get BFS(Object origin) {
* breadth-first search (callédvel-order in trees) resetVerticies(); _
SeqStructure toDo = new QueueAsLi st ();
* process: SeqStructure path = new QueueAsList();

- visit origin (record this node)

- visit each of origin’s neighbors (record each node
order visited)

- visit neighbors of each neighbor (record thoseesdd
and so forth

» show/print path as { vl, v2, ... vh };

- left side (v1) is origin

- each visited “level” is inserted to right of preus
node

- so might wish to think as { {level 1}, {level 2}... }

Vertex originVertex = (Vertex)verticies.get(origin);
originVertex.visit();

toDo. put (ori gi nVertex);

pat h. put (origi nVertex);

whil e(!'toDo.isEnpty()) {
Vertex currentVertex = (Vertex)toDo.get();

for (Iterator edges =
current Vertex. get Edgel terator();
edges. hasNext (); ) {

Edge current Edge = (Edge) edges.next();
Vertex nextVertex = current Edge. get Dest();

if(!'nextVertex.isVisited()) {
next Vertex. visit();

t oDo. put (next Vertex);
pat h. put (next Vert ex);

}

return path;

35

36




14.7 Example

seeTest Di graph. j ava
contains more examples

i graph g = new Di graph();
.addVertex("A");

. addVertex("
.addVertex("
. addVertex("
. addVertex("
.addVertex("
. addVertex("
. addEdge("
. addEdge("
. addEdge("
. addEdge("
. addEdge("
. addEdge("

.QTmMQ QW

QUMmMQUQEWTTTITITT

Qoo g
—

QQ@mE@® >

System out. println(g.get BFS("A"));
System out. println(g.getDFS("A"));

om
M7
Q.6

15. Shortest Path Algorithms

15.1

Assumptions

edge-weighted graph (unitary or more)

weight is a cost of using an edge

graphs may be directed or undirected
non-negative edge weights!

Why?

want to find best/cheapest/least effort betwedntpo
travelling is classic example

Terms

weighted path length = sum of weights on path
unweighted path length = sum of paths (weights = 1)

37

38

15.4 SSSP
« to find shortest path from A to B, need to figiebrtest
path from A to all other nodes

- why? another node might provide a better path
- see DS&A 16.4.1: basically, knowing all the path
lengths might mean you can find a shorter route

« this problem calledingle-source shortest path problem

16. SSSP for Unweighted Graphs

16.1

The Gist

based on BFS
all traverse trees, keep track of increasing patgths to a
particular node
algorithm finds only 1 path if multiple paths amallest
and have same value
will need to modify classes again

- need to find all paths to end node

- need to keep track of length to current node

(so can have length values after traversal)
- so, need to keep track of previous node

39

40




16.2

Process for SSSP

finding shortest path from A to B means countidges
smallest number of edges gives shortest path
since starting at A, start counting @ A:

1%
\B———vE
try to find final node, so count edges while laaki

C\“D

\B——’E

which will get the smallest node cost if check whieach
final node and backtrack

16.3

Path Cost

« for path to node v, distance to v is Dv

e forv - w,Dw=Dv+1

« helpful convention: default node cost for SSSP:
Dw = o

< we're not really using the Dw convention, thougany

implementations do (we have si t ed, which is our
way of tagging visited nodes)

LY

42

16.4

Algorithm (BFS for Destination)

start with origin

put origin in Q

not done, so take first node from Q

find edges from node

for each node, if it's not already been visited

- tag it, set cost, set prev node, put in Q
- if the node is dest, stop processing!

16.5 Example: Part 1-Build Q

A—D—G

B—> E—H

t L7

Ce—Fe—I

origin: A end: |
get AA Q= [A]
get A Q=1 ]

get

get

get

get

get

process (AD), (AE), (AB) (nodes D, E, B)

for each node, put in Q[D E B], tag, set cost (1),
set prev (A), check if dest (no for all)

Di Q= [E, B]

process (DG (node G

tag G put in Q[E B, G, set cost (G2),

set prev (D), check if dest (no)

E [B {J

process (EH), (EF) (nodes H F)

tag nodes, put in Q[B,GH F], set costs (H=F=2)
& prev (E), check if dest (no for all)

B: [GH,F]

not hi ng new -- no processing

G [HF]

process (GH)

not hi ng new (H al ready visited)

H [

tag |, put in Q[H F, 1], set cost (3), set prev (H

check if dest -- yes! STOP!

43

44




16.6 Example: Part 2—Build Stack

put last vertex (end) into Stack: [I]

set last vertex to prev of last index: H
put last vertex into Stack: [H 1]

set last vertex to prev of last index: E
put last vertex into Stack: [E H I]

set last vertex to prev of last index: A
put last vertex into Stack: [A E H 1]

no nore prev (prev is null)

return Stack, which contains shortest path

16.7 Code

public SeqStructure unwei ghtedShortestPath(Cbject origin, Object end) {
resetVerticies();
bool ean done = fal se;
SeqStructure toDo = new QueueAsList();
SeqStructure path = new StackAsList();

Vertex originVertex = (Vertex)verticies.get(origin);
Vertex endVertex = (Vertex)verticies.get(end);
originVertex.visit();

toDo. put (originVertex);

whi | e(!done && !toDo.isEnpty()) {
Vertex currentVertex = (Vertex)toDo.get();

for (Iterator edges=currentVertex.getEdgelterator();
!'done && edges. hasNext(); ) {

Edge current Edge = (Edge) edges.next();
Vertex nextVertex = currentEdge. getDest();

if(!nextVertex.isVisited()) {
nextVertex.visit();
next Vert ex. set Cost ( 1+current Vertex. get Cost());
next Vertex. set Prev(current Vertex);
toDo. put (next Vertex);

}

if (nextVertex.equal s(endVertex))
done = true;

} 1/ end for
} I/ end while
pat h. put (endVertex) ;
whi | e(endVertex. hasPrev()) {
endVertex = endVertex.getPrev();

pat h. put (endVertex) ;

return path;

45

46

17. Exercises

» Use recursion to rewrite (and simplify) the DF$ieoYou
might need a helper method.
» Write a program that finds all DFS/BFS paths graph.
Is this problem related to an implicit graph search
» Rewrite the shortest path algorithm such thasésuthe
convention of “infinite” costs as the check forpgting
instead of tagging of nodes.
Try to figure out an algorithm for finding the skest path when
there are edge weights.

18. Overview:

« shortest path algorithm for weighted graph
(Dijkstra’s algorithm)

« all pairs source shortest path
(Floyd’s algorithm)

e minimum cost spanning trees
(Prim’s algorithm, Kruskal’s algorithm)

47

48




19. Shortest Path for Weighted Graphs
19.1 Assumptions

» could be directed or undirected
* non-negative weights

Dijkstra’s Algorithm

 very famous
» example of greedy algorithm

* on-line demo:
http://www-b2.is.tokushima-u.ac.jp/~ikeda/suurikdijra/
Dijkstra.shtml

19.3 Wordy Gist: Based ON BFS

* BFS: visit the nodes by “levels” or “layers”

- put new (unvisited) nodes in Q

- look at each node at each layer

- process each node and repeat

- don't re-process already-visited nodes

* New twist!

- don't treat all unvisited nodes as equals

- want smallest accumulation of weights

- so, need to sum weights along the way and maybg
pick a different node than what'’s in front of the Q

v

49 50
19.4 Physical Gist s 5 String now becomes tighter at D
D—G
zq% [ Why? After E comes F or H, each of
5 5 2 G Want shortest path from A to | B X e—2+y  whichis longer than D
—
PN |1 Imagine graph is weights and strings, in ° (L_Siétb record: A~ D

which strings are cut to scaled lengths

Pick up weights one at a time

T

5 2 Pick up A
D—G
2 14 ] |1 sString becomes tigfiirst at B

st 8l record: A~ B
C<—Foidj
4 1
5 2 Pick up B
D—G
2 14 ] |1 String becomes tigtiirst at E

record: A~B- E

We could have gotten to E via A

Pick up D, followed by F
But, G will be in “next round”

so, record: AAD-G

2 Eventually:

5
D—G
2 14 611 record: As D G- H- |

Forms a tree

51

52



19.5 Pseudocode Gist: Version 1 19.6 Code Gist: Version 1

* Longish algorithm that uses cost in organizin@pty /1 fromdijkstral in Digraph.java:
queue to choose nodes resetVerticies():
: « F) . bool ean done = fal se;
* abit expanded on WOI’dy gISt from before: SeqStructure toDo = new Heap(edgeCount); // use min heap!
- pick the highest priority node (the smallest diSt) SeqStructure path = new QueueAsList();// should use stack
- tag the node, record previous, update cost: Vertex originVertex = (Vertex)verticies.get(origin);
pQ element: <node,accumulating cost> Vertex endVertex = (Vertex)verticies.get(end);

. . originVertex.setPrev(null);
- repeat until no more PQ or no more unvisted N0des| (oo, put (new M nPGEI ement (ori gi nVer t ex, 0) ) :

(note: tagging happeradter extract from PQ) Whi | e(1 done €& 1 toDo. 1 SEMLY()) {

 Visualization: M nPQEl enent entry = (M nPQEl ement) toDo. get();
Vertex currentVertex = (Vertex) entry.getlten();
/1 code not shown

Current : :
3 4 CurrentAdjacent PQ Previous } // end while
AJ_/, B— D\‘F Entry Node Nodes Node
~c— /1, <A, 0> A [ pa_th. put (endVertex);
2 3 B [<B,1>] A whi | e(endVertex. hasPrev()) {
C [<B1><C/2>] A endVertex = endVertex.getPrev();
<B,1> B [<C,2>] pat h. put (endVert ex);
D [<C,2><D4>] A }
<C2> C return path;
E [<D4><ES5>] C
<D,4> D
F [<E,5>,<F,8>] D
<E)5> E
F [<F,6>,<F,8>] E
<F,6> F
[<F.8>] F
53 54
19.7 Pseudocode Gist: Version 2 19.8 Code Gist: Version 2
. Data public SeqStructure dijkstra3(GOhject origin, Cbject end) {
t Vert I'nt . MAX_VALUE) ;
- s: start vertex SeqStructUre. ToDo. < new Hoap( edgbCount)
_ C(| ]) COSt from | tOJ SeqStructure path = new QueueAslList();
e Vertex originVertex = (Vertex)verticies.get(origin);
. . .. Vertex endVertex = (Vertex)verticies.get(end);
- dist(n): distance from s to n (initiall
( ) ( yo ) originVertex.setPrev(null);
H H origi nVertex. set Cost (0);
- PQ to store neighboring nodes and choose the one T oDo. put {now M nPOE] erent (or | gl nVert ex, 0))
H H “ 7
with min cost at each “layer whi I o( 1 toDo. i SEMLY()) {
. H H H M nPQEl ement entry = (M nPQEl enent) toDo.get();
(nOte PQ Size 1S edgecount -> max # Of adJ n0des’) Vertex currentVertex = (Vertex) entry.getlten();
AI or|thm currentVertex.visit();
.

g . for (Iterator edges=currentVertex.getEdgelterator();
dist(s) <- 0 edges. hasNext (); ) {
while (some vertices are unvisited)

. . Edge current Edge = (Edge) edges.next();
v <- unnarked vertex with smallest dist Vertex nextVertex = current Edge. get Dest();
(get fromthe PQ int nextCost = currentEdge. get i ght () +
tag v current Vertex. get Cost ();
for eaCh node W_ adj acem tO_V if (nextVertex.getCost() > nextCost ) {
dist(w) = mn(dist(w),dist(v)+c(v,w)) next Ver t ex. set Cost (next Cost);
end for next Vertex. set Prev(currentVertex);
. t oDo. put (
end while new M nPQEl enent (next Vert ex, next Cost));
}
}
pat h. put (endVertex);
whi | e(endVertex. hasPrev()) {
endVertex = endVertex.getPrev();
pat h. put (endVertex) ;
}
return path;
}

55 56




19.9 Proof Gist

* Induction on iterations of while loop

- each iteration moves one new node into lifted set
- do induction on set of nodes ordered in the secpier
in which they get put into the lifted set

* Induction:

- base case: path from origin to self is 0

- inductive hypothesis: assume that the shortebsgat
all nodes currently in the lifted set have been
computed correctly

- inductive hypothesis: the next node that getsdiiis
correct

» see Panels 16-19 at http://www.cs.cornell.edukesir
€s211/2002sp/Lectures/graphs-quad.pdf

19.10 Run-time Analysis for Adjacency List

« dominant operation of method is while loop (prieg
unvisited nodes)
« time for processing each vertex:
- each vertex processed once
- all edges from a vertex might be processed
- so, for each node, add up time for each edge
- s0, O(|V| + |E]) (see BFS time)
¢ PQ ops?
- worst case: each edge has a node to queue and
dequeue (seeor loop and inner )
- so, PQ has max length of |E|
- from heap: put is O(log n), get is O(log n)
- so, adding each edge’s contribution gives
O(|E| log |E[)
« total: O(|V| + |E| log |E|)

19.11 Adjacency Matrix
* O(IVI"2 + |E] log |E])

57

58

20. All Pairs Shortest Path
20.1 Problem

 given edge weighted graph
« for each pair of verticies find length of shortpath

One Solution

* run Dijkstra’s algorithm |V|+ times
» use each vertex as the origin

21. Spanning Trees

21.1 Interesting Thing About Traversals

* BFS, DFS don't repeat -> no cycles

« can backtrack to find a new unvisited node, buh'vo
repeat it

« what does that look like?

e arooted tree!

« ex) BFS = {A,B,D,E,GH,FI,C}

20.3 Floyd’s Algorithm A Do G
« use adjacency matrix é\ E_Ji

» see 16.4.2 in DS&A t L7
Ce—Fe—I

59 60




21.2 Spanning Tree 21.5 Compare to SSSP

« effectively a subset of a graph: * SSSP: shortest path to a node
- all nodes sames as in G what's cheapest way to get from A to Z using nodes
- tree edges must be graph edges (but nec all!) {A,....Z}
- connected * MST: smallest sum of weights connecting each node
- acyclic what's cheapest way to connect all nodes {A,...,Z}?
 constructing?
- pick a starting edge 4 /A\4 weighted, undirected graph
- add edges with unvisited dest nodes B—c

1
21.3 Minimal Spanning Tree

. . . A
 given: undirected, weighted graph 4/ \ 4 SSSP for A .C: {A,C}
. . _ . B Tree: {{A,B}, {A,C}}
» weight of spanning tree = sum of tree edge weights TC
* mMinimum spanning tree:
- any spanning tree with smallest weight

A
4
- could have many such trees /\*  JSTtorraph

Tree: {{A,B}, {B,C}}

B~—c
21.4 Application !
« find a cheap way to connect a bunch of nodes
- as in something travelling an entire graph
- plane needs to travel to a set of cities
- wants cheapest path to take that still hits siksi
61 62
21.6 Prim’'s Algorithm 22. Exercises
« modify Dijsktra’s Algorithm: « Modify the heap code to use a minimum heap.
- put edges in PQ + Modify the heap code to provide a sorted string fo
- associate edges with length of edge (don’t adtsyos describing a priority queue.
- otherwise, algorithm is the same « Prove by induction that Dijkstra’s algorithm isrpect.
21.7 Kruskal's Algorithm e Implement Prim’s algorithm.

» add edges by increasing order of weights
 not allowed to add edges that form cycles

63 64




