

#### Prelim 2 Reminder

- Prelim 2
  - Tuesday, Nov 14, 7:30-9pm
  - One week from today!
  - Topics: all material through
  - Does not include
    - Graphs
    - GUIs in Java
- Exam conflicts
  - Email Kelly Patwell (ASAP)
- Note: this week's Section meetings are last chance to ask questions about exam
  - Next week = regular section meeting

- · Prelim 2 Review Session
  - Time & room are not yet determined
  - See Exams on course website for up-to-date information
  - Individual appointments are available if you cannot attend the review session (email one TA to arrange appointment)
- · Old exams are available for review on the course website

### Prelim 2 Topics

- · Asymptotic complexity
- · Searching and sorting
- Basic ADTs
  - stacks
  - queues
  - sets dictionaries
- priority queues
- Basic data structures used to implement these ADTs
  - arrays
  - linked lists
  - hash tables
  - BSTs balanced BSTs
  - heaps

- · Know and understand the sorting algorithms
  - From lecture
  - From text (not Shell Sort)
- · Know the algorithms associated with the various data structures
  - Know BST algorithms, but don't need to memorize balanced BST algorithms
- Know the runtime tradeoffs among data structures
- · Don't worry about details of JCF
  - But should have basic understanding of what's available

### Data Structure Runtime Summary

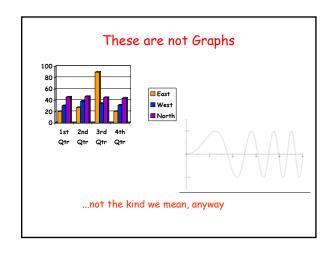
- Stack [ops = put & get]
  - O(1) worst-case time
    - Array (but can overflow) Linked list
  - O(1) expected time
    - · Array with doubling
- Queue [ops = put & get]
  - O(1) worst-case time • Array (but can overflow)
    - Linked list (need to keep track of both head & last)
  - O(1) expected time
    - · Array with doubling

- Priority Queue [ops = insert & getMin]
  - O(1) worst-case time
    - Bounded height PQ (only works if few priorities)
  - O(log n) worst-case time • Heap (but can overflow)
    - Balanced BST
  - O(log n) expected time • Heap (with doubling)
  - O(n) worst-case time
    - Unsorted linked list
    - Sorted linked list (O(1) for getMin)
    - Unsorted array (but can overflow)
    - · Sorted array (O(1) for getMin, but can overflow)

### Data Structure Runtime Summary (Cont'd)

- Set [ops = insert & remove & contains]
  - O(1) worst-case time
    - Bit-vector (can also do union and intersect in O(1) time)
  - O(1) expected time
    - Hash table (with doubling & chaining)
  - O(log n) worst-case time
    - · Balanced BST
  - O(n) worst-case time Linked list
    - Unsorted array
    - Sorted array (O(log n) for contains)

- Dictionary [ops = insert(k,v) & get(k) & remove(k)]
  - O(1) expected time
    - . Hash table (with doubling & chaining)
  - O(log n) worst-case time Balanced BST
  - O(log n) expected time
  - Unbalanced BST (if data is sufficiently random)
  - O(n) worst-case time
    - Linked list
    - · Unsorted array
    - Sorted array (O(log n) for contains)



### These are Graphs













### Applications of Graphs

- Communication networks
- Routing and shortest path problems
- Commodity distribution (flow)
- Traffic control
- Resource allocation
- · Geometric modeling
- ...

### **Graph Definitions**

- A directed graph (or digraph) is a pair (V, E) where
  - V is a set
  - $\blacksquare$  E is a set of ordered pairs (u,v) where u,v  $\in V$ 
    - Usually require  $u \neq v$  (i.e., no self-loops)
- An element of V is called a vertex (pl. vertices) or node
- An element of E is called an edge or arc
- |V| = size of V, often denoted n
- |E| = size of E, often denoted m

### Example Directed Graph

Example:



 $V = \{a,b,c,d,e,f\}$ 

 $E = \{(a,b), (a,c), (a,e), (b,c), (b,d), (b,e), (c,d), (c,f), (d,e), (d,f), (e,f)\}$ 

|V| = 6, |E| = 11

## Example Undirected Graph

An undirected graph is just like a directed graph, except the edges are unordered pairs (sets) {u,v}

Example:



 $V = \{a,b,c,d,e,f\}$ 

 $E = \{\{a,b\}, \{a,c\}, \{a,e\}, \{b,c\}, \{b,d\}, \{b,e\}, \{c,d\}, \{c,f\}, \{d,e\}, \{d,f\}, \{e,f\}\}$ 

# Some Graph Terminology

- Vertices u and v are called the source and sink of the directed edge (u,v), respectively
- Vertices u and v are called the endpoints of (u,v)
- Two vertices are adjacent if they are connected by an edge
- The outdegree of a vertex u in a directed graph is the number of edges for which u is the source
- The indegree of a vertex v in a directed graph is the number of edges for which v is the sink
- The degree of a vertex u in an undirected graph is the number of edges of which u is an endpoint





### More Graph Terminology



- A path is a sequence  $v_0,v_1,v_2,...,v_p$  of vertices such that  $(v_i,v_{i+1})\in E,\ 0\le i\le p-1$
- The length of a path is its number of edges
  - In this example, the length is 5
- A path is simple if it does not repeat any vertices
- A cycle is a path  $v_0, v_1, v_2, ..., v_p$  such that  $v_0 = v_p$
- A cycle is simple if it does not repeat any vertices except the first and last
- A graph is acyclic if it has no cycles
- A directed acyclic graph is called a dag



### Is this a dag?



- Intuition:
  - If it's a dag, there should be a "first" vertex (i.e., a vertex with indegree zero)
- · This idea leads to an algorithm
  - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

# Is this a dag?



- Intuition:
  - If it's a dag, there should be a "first" vertex (i.e., a vertex with indegree zero)
- This idea leads to an algorithm
  - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

# Is this a dag?



- Intuition:
  - If it's a dag, there should be a "first" vertex (i.e., a vertex with indegree zero)
- This idea leads to an algorithm
  - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

## Is this a dag?



- Intuition:
  - If it's a dag, there should be a "first" vertex (i.e., a vertex with indegree zero)
- This idea leads to an algorithm
  - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

# Is this a dag?



- Intuition:
  - If it's a dag, there should be a "first" vertex (i.e., a vertex with indegree zero)
- This idea leads to an algorithm
  - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

### Is this a dag?



- Intuition:
  - If it's a dag, there should be a "first" vertex (i.e., a vertex with indegree zero)
- This idea leads to an algorithm
  - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

### Is this a dag?



- · Intuition:
  - If it's a dag, there should be a "first" vertex (i.e., a vertex with indegree zero)
- This idea leads to an algorithm
  - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

# Is this a dag?



- Intuition:
  - If it's a dag, there should be a "first" vertex (i.e., a vertex with indegree zero)
- This idea leads to an algorithm
  - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

### Is this a dag?



- Intuition:
  - If it's a dag, there should be a "first" vertex (i.e., a vertex with indegree zero)
- This idea leads to an algorithm
  - A digraph is a dag if and only if we can iteratively delete indegree-0 vertices until the graph disappears

# Topological Sort

- We just computed a topological sort of the dag
  - This is a numbering of the vertices such that all edges go from lower- to higher-numbered vertices



Useful in job scheduling with precedence constraints

### Graph Coloring

 A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color



• How many colors are needed to color this graph?

### Graph Coloring

 A coloring of an undirected graph is an assignment of a color to each node such that no two adjacent vertices get the same color



How many colors are needed to color this graph?
3

### An Application of Coloring

- Vertices are jobs
- Edge (u,v) is present if jobs u and v each require access to the same shared resource, and thus cannot execute simultaneously
- Colors are time slots to schedule the jobs
- Minimum number of colors needed to color the graph = minimum number of time slots required



### Planarity

 A graph is planar if it can be embedded in the plane with no edges crossing



• Is this graph planar?

### **Planarity**

 A graph is planar if it can be embedded in the plane with no edges crossing



- Is this graph planar?
  - Yes

### Planarity

• A graph is planar if it can be embedded in the plane with no edges crossing



Is this graph planar?

Yes

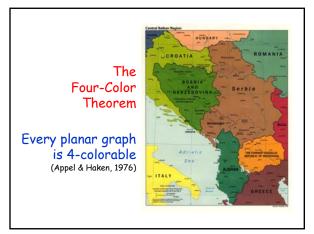
## **Detecting Planarity**

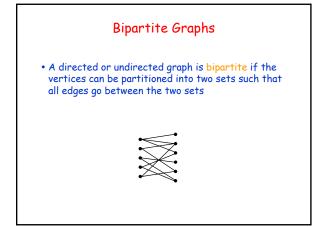
### Kuratowski's Theorem

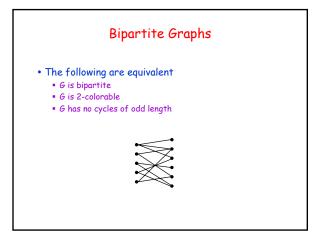


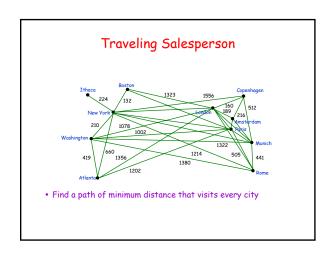


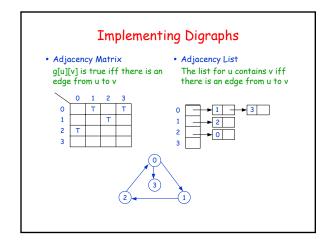
A graph is planar if and only if it does not contain a copy of  $K_5$  or  $K_{3,3}$  (possibly with other nodes along the edges shown)

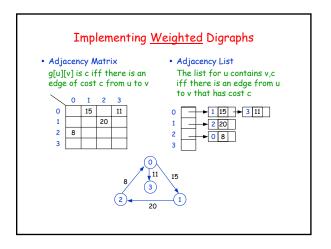












# Implementing Undirected Graphs • Adjacency Matrix Adjacency List g[u][v] is true iff there is an edge from u to v The list for u contains v iff there is an edge from u to v 2 0 0 ТТ **→** 1 Т

# Adjacency Matrix or Adjacency List?

n = number of vertices

m = number of edges

mu = number of edges leaving u

#### Adjacency Matrix

- Uses space O(n²)
- Can iterate over all edges in time  $O(n^2)$
- Can answer "Is there an edge from u to v?" in O(1) time
- Better for dense (i.e., lots of edges) graphs

#### · Adjacency List

- Uses space O(m+n)
- Can iterate over all edges
- in time O(m+n)Can answer "Is there an edge from u to v?" in  $O(m_u)$ time
- Better for sparse (i.e., fewer edges) graphs