

Sorting

Lecture 13 CS211 - Fall 2006

InsertionSort

```
// Code for sorting at 1, an array of int
for (int i = 1; i < a,length; i++) {
  int temp = a[i];
  for (; 0 < k && temp < a[k-1]; k - -)
          a[k] = a[k-1];
  a[k] = temp;
```

- Many people sort cards this
- Invariant: everything to left of i is already sorted
- · Works especially well when input is *nearly sorted*

- Runtime
 - Worst-case
 - O(n²)
 - · Consider reverse-sorted input
 - Best-case
 - O(n)
 Consider sorted input Expected-case

 - O(n²)
 - · Can count expected number

SelectionSort

- To sort an array of size n:
 - Examine all elements from 0 to (n-1); find the smallest one and swap it with the 0th element of the array
 - · Examine all elements from 1 to (n-1); find the smallest in that part of the array and swap it with the 1st element of the
 - In general, at the ith step. examine array elements from i element in that range, and exchange it with the it element of the array
- · This is the other common way for people to sort cards
- Runtime
 - Worst-case
 - O(n²) Best-case
 - O(n2)
 - Expected-case O(n²)

- It often pays to
 - Break the problem into smaller subproblems,
 - Solve the subproblems separately, and then
 - Assemble a final solution
 - This technique is called Divide-and-Conquer
 - Caveat: It won't help unless the partitioning and assembly processes are inexpensive

Divide & Conquer?

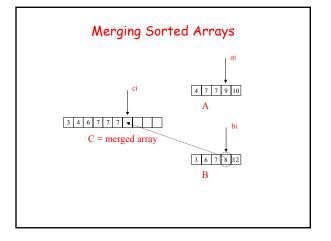
• Can we apply this approach to sorting?

MergeSort

- Quintessential divide-andconquer algorithm
- Divide array into equal parts, sort each part, then merge
- Three questions:
 - Q1: How do we divide array into two equal parts?
 - A1: Use indices into array
 - Q2: How do we sort the parts?
 - A2: call MergeSort recursively!
 - Q3: How do we merge the sorted subarrays?
 - A3: Have to write some (easy) code

Merging Sorted Arrays A and B

- Create an array C of size = size of A + size of B
- Keep three indices:
 - ai into A
 - bi into B
 - ci into C
- Initialize all three indices to 0 (start of each array)
- Compare element A[ai] with B[bi], and move the smaller element into C[ci]
- Increment the appropriate indices (ai or bi), and ci
- If either A or B is empty, copy remaining elements from the other array (B or A, respectively) into C



MergeSort Analysis

- Outline (text has detailed code)
 - ode)

 Split array into two halves
 - Recursively sort each half
 - Merge the two halves
- Merge = combine two sorted arrays to make a single sorted array
 - Rule: Always choose the smallest item
 - Time: O(n) where n is the combined size of the two arrays

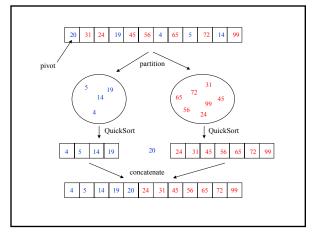
- Runtime recurrence
 - Let T(n) be the time to sort an array of size n
 T(n) = 2T(n/2) + O(n)
 T(1) = 1
- Can show by induction that T(n) = O(n log n)
- Alternately, can show T(n) = O(n log n) by looking at tree of recursive calls

MergeSort Notes

- Asymptotic complexity: O(n log n)
 - Much faster than O(n²)
- Disadvantage
 - Need extra storage for temporary arrays
 - In practice, this can be a serious disadvantage, even though MergeSort is asymptotically optimal for sorting
 - Can do MergeSort in place, but this is very tricky (and it slows down the algorithm significantly)
- Are there good sorting algorithms that do not use so much extra storage?
 - Yes: QuickSort

QuickSort

- Intuitive idea
 - Given an array A to sort, choose a pivot value p
 - Partition A into two subarrays, AX and AY
 - + AX contains only elements $\leq p$
 - AY contains only elements ≥ p
 Sort subarrays AX and AY separately
 - Concatenate (not merge!) sorted AX and AY to produce sorted A
 - Note that concatenation is easier than merging



QuickSort Questions

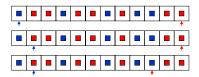
- Key problems
 - How should we choose a pivot?
 - How do we partition an array in place?
- Partitioning in place
 - · Can be done in O(n) time
 - See next few slides
- Choosing a pivot
 - Ideal pivot is median since this splits array in half
 - Unfortunately, computing the median is expensive
 - Popular heuristics
 - Use first value in array as pivot (this is a bad
 - choice)

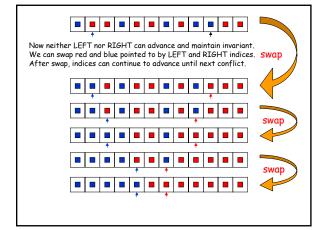
 Use middle value in array as pivot
 - Use median of first, last, and middle values in array as pivot

In-Place Partitioning

How can we move all the blues to the left of all the reds?

- Keep two indices, LEFT and RIGHT
- Initialize LEFT at start of array and RIGHT at end of array
- 3. Invariant: all elements to left of LEFT are blue all elements to right of RIGHT are red
- Keep advancing indices until they pass, maintaining invariant





- Once indices cross, partitioning is done
- If you replace blue with $\leq p$ and red with $\geq p$, this is exactly what we need for QuickSort partitioning
- · Notice that after partitioning, array is partially sorted
- · Recursive calls on partitioned subarrays will sort subarrays
- No need to copy/move arrays since we partitioned in place

QuickSort Analysis

- Runtime analysis (worst-case)
 - Partition can work badly producing this:
 - Runtime recurrence • T(n) = T(n-1) + n
 - This can be solved to show worst-case T(n) = O(n²)
- Runtime analysis (expected-case)
 - More complex recurrence (see text)
 - Can solve to show expected T(n) = O(n log n)
- Can improve constant factor by avoiding QuickSort on small sets
 - Switch to InsertionSort (for example) for sets of size, say, 8 or
 - Definition of small depends on language, machine, etc.

Sorting Algorithm Summary

- The ones we have discussed
 - Insertion Sort
 - Selection Sort
 - Merge Sort
 - Quick Sort
- Other sorting algorithms
 - Heap Sort (come back to this)
 - Shell Sort (in text)
 - Bubble Sort (nice name)
 - Radix Sort
 - Bin Sort
 - Counting Sort

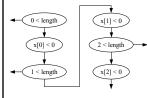
- Why so many? Do Computer Scientists have some kind of sorting fetish or what?
 - Stable sorts: Ins, Sel, Mer
 - Worst-case O(n log n): Mer, Hea
 - Expected-case O(n log n):
 - Mer, Hea, Qui Best for nearly-sorted
 - sets: Ins • No extra space needed: Ins, Sel, Hea
 - Fastest in practice: Qui
 - Least data movement: Sel

Lower Bounds on Sorting: Goals

- · Goal: Determine the minimum time required to sort *n* items
- · Note: we want worst-case not best-case time
 - Best-case doesn't tell us much; for example, we know Insertion Sort takes O(n) time on alreadysorted input
 - We want to determine the worst-case time for the best-possible algorithm
- But how can we prove anything about the best possible algorithm?
 - We want to find characteristics that are common to all sorting
 - Let's try looking at comparisons

Comparison Trees

- Any algorithm can be "unrolled" to show the comparisons that are (potentially) performed
 Example
 - for (int i = 0; i < x.length; i++
 if (x[i] < 0) x[i] = -x[i];



- In general, you get a comparison tree
- If the algorithm fails to terminate for some input then the comparison tree is infinite
- The height of the comparison tree represents the worst-case number of comparisons for that algorithm

Lower Bounds on Sorting: Notation

- ullet Suppose we want to sort the items in the array B[]
- · Let's name the items
 - a₁ is the item initially residing in B[1], a₂ is the item initially residing in B[2], etc.
 - In general, a_i is the item initially stored in B[i]
- Rule: an item keeps its name forever, but it can change its location
 - \bullet Example: after swap(B,1,5), a_1 is stored in B[5] and a_5 is stored in B[1]

The Answer to a Sorting Problem

- An \emph{answer} for a sorting problem tells where each of the a_i resides when the algorithm finishes
- · How many answers are possible?
- The $\emph{correct}$ answer depends on the actual values represented by each $a_{\rm i}$
- Since we don't know what the a_i are going to be, it has to be $\it possible$ to produce each permutation of the a_i
- For a sorting algorithm to be valid it must be possible for that algorithm to give any of n! potential answers