

Searching & Asymptotic Complexity

Lecture 12 CS211 - Fall 2006

Announcements

- Prelim 1
 - Occurs at 7:30pm on Thursday (Oct 12) after Fall Break (i.e., 9 days from today)
 - Topics: all material from August & September
 - Includes Interfaces & Comparable
 - Not Searching & Sorting & Asymptotic Complexity (this week's topics)
- Exam conflicts
 - Email Kelly Patwell ASAP

- Prelim 1 review sessions
 - Wed Oct 11
 - See Exams on course website for more information
 - Individual appointments are available if you cannot attend the review sessions (email one TA to arrange appointment)
- Old exams are available for review on the course website
- Sections for Wed, Oct 11, are cancelled
 - This week's sections are the last before Prelim 1

ACSU Announcement

- ACSU 2nd general meeting
 - 5pm Wednesday, Oct 4, in PH 203
 - Talk by John Hopcroft (2005 ACSU Faculty of the Year)
 - Future of CS theory and its applications
 - Free pizza!

What Makes a Good Algorithm?

- Suppose you have two possible algorithms or data structures that basically do the same thing; which is better?
- · Well... what do we mean by better?
 - Faster?
 - Less space?
 - Easier to code?
 - Easier to maintain?
 - Required for homework?
- How do we measure time and space for an algorithm?

Sample Problem: Searching

- Determine if a *sorted* array of integers contains a given integer
- 1st solution: Linear Search (check each element)

```
static boolean find (int[] a, int item) {
  for (int i = 0; i < a.length; i++) {
      if (a[i] == item) return true;
      }
  return false;
  }</pre>
```

• 2nd solution: Binary Search

```
static boolean find (int[] a, int item) {
  int low = 0;
  int high = a.length - 1;
  while (low <= high) {
    int mid = (low+high)/2;
    if (a[mid] < item)
        low = mid+1;
    else if (item < a[mid])
        high = mid - 1;
    else return true;
    }
  return false;
}
```

Linear Search vs. Binary Search

- Which one is better?
 - Linear Search is easier to program
 - But Binary Search is faster... isn't it?
- How do we measure to show that one is faster than the other
 - Experiment?
 - Proof?
 - But which inputs do we
- Simplifying assumption #1: Use the size of the input rather than the input itself
 - For our sample search problem, the input size is n+1 where n is the array size
- Simplifying assumption #2: Count the number of "basic steps" rather than computing exact times

One Basic Step = One Time Unit

- - input or output of a scalar value
 - accessing the value of a scalar variable, array element, or field of an
 - assignment to a variable, array element, or field of an object
 - a single arithmetic or logical operation
 - method invocation (not counting argument evaluation and execution of the method body)
- For a conditional, we count number of basic steps on the branch that is executed
- For a loop, we count number of basic steps in loop body times the number of iterations
- For a method, we count number of basic steps in method body (including steps needed to prepare stack-frame)

Runtime vs. Number of Basic Steps

- · But isn't this cheating?
 - The runtime is not the same as the number of basic steps
 - Time per basic step varies depending on computer, on compiler, on details of code...
- · Well... yes, it is cheating in a
 - But the number of basic steps is proportional to the actual runtime

- · Which is better?
 - n or n2 time?
 - 100 n or n² time?
 - 10,000 n or n² time?
- · As n gets large, multiplicative constants become less important
- Simplifying assumption #3: Multiplicative constants aren't important

Using Big-O to Hide Constants

 Roughly, f(n) = O(q(n)) means that f(n) grows like g(n) or

<u>Definition</u>: O(g(n)) is a set, f(n) is a member of this set if and only if there exist constants c and N such that $0 \le f(n) \le c g(n)$, for all $n \ge N$

- We should write $f(n) \in O(g(n))$
- But by convention, we write f(n) = O(g(n))

Claim: $n^2 + n = O(n^2)$

We know $n \le n^2$ for $n \ge 1$

So $n^2 + n \le 2 n^2$ for $n \ge 1$

So by definition, $n^2 + n = O(n^2)$

for c=2 and N=1

c g(n)

- To prove that f(n) = O(g(n)):
 - Find an N and c such that $0 \le f(n) \le c g(n)$, for all $n \ge N$
 - We call the pair (c, N) a witness pair for proving that f(n) = O(q(n))

A Graphical View of Big-O Notation

Big-O Examples

Claim: 100 n + log n = O(n)

Claim: $log_B n = O(log n)$

We know log $n \le n$ for $n \ge 1$

Let k = log n

So 100 n + log n \leq 101 n for $n \ge 1$

So by definition, $100 \text{ n} + \log \text{ n} = O(\text{n})$

for c=101 and N=1

Then $n = 2^k$ and (the subscripts are too messy; switch to board)

Question: Which grows faster: sqrt(n) or log n?

Simple Big-O Examples

- Let $f(n) = 3n^2 + 6n 7$
 - Claim f(n) = O(n²)
 - Claim f(n) = O(n3)
 - Claim f(n) = O(n4)
- $g(n) = 4n \log n + 34 n 89$
 - Claim $g(n) = O(n \log n)$
 - Claim g(n) = O(n²)
- $h(n) = 20 * 2^n + 40$
 - Claim h(n) = O(2ⁿ)
- a(n) = 34
 - Claim a(n) = O(1)

• Only the *leading* term (the term that grows most rapidly) matters

Problem-Size Examples

• Suppose we have a computing device that can execute 1000 operations per second; how large a problem can we solve?

	1 second	1 minute	1 hour
n	1000	60,000	3,600,000
n log n	140	4893	200,000
n²	31	244	1897
3n ²	18	144	1096
n³	10	39	153
2 ⁿ	9	15	21

Commonly Seen Time Bounds

O(1)	constant	excellent
O(log n)	logarithmic	excellent
O(n)	linear	good
O(n log n)		pretty good
O(n²)	quadratic	OK
O(n³)	cubic	maybe OK
O(2 ⁿ)	exponential	too slow

Related Notations

• Big-Omega

• Big-Theta

Definition:

f(n) is a member of the set $\Omega(g(n))$ if there exists $\bar{\text{constants}}$ c and N such that $0 \le c g(n) \le f(n)$, for all $n \ge N$

Definition:

f(n) is a member of the set $\Theta(g(n))$ if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Worst-Case/Expected-Case Bounds

- We can't possibly determine time bounds for all possible inputs of size n
- Simplifying assumption #4: Determine number of steps
 - worst-case or
 - expected-case
- · Worst-case
 - Determine how much time is needed for the worst possible input of size n
- Expected-case
 - Determine how much time is needed *on average* for all inputs of size n

Our Simplifying Assumptions

- 1. Use the size of the input rather than the input itself
- 2. Count the number of "basic steps" rather than computing exact times
- 3. Multiplicative constants aren't important (i.e., use big-O notation)
- 4. Determine number of steps for either
 - 1. worst-case or
 - 2. expected-case

Worst-Case Analysis of Searching

• Linear Search (check each element) static boolean find (int[] a, int item) { for (int i = 0; i < a,length; i++) {
 if (a[i] == item) return true;

return false;

For Linear Search, worst-case time is O(n)

For Binary Search, worst-case time is O(log n)

· Binary Search

static boolean find (int[]a, int item) { int high = a,length - 1; int high = a.lengTn - 1;
while (low <= high) {
 int mid = (low+high)/2;
 if (a[mid] < item)
 low = mid+1;</pre> else if (item < a[mid]) high = mid - 1; else return true; return false;

Analysis of Matrix Multiplication

Code for multiplying n-by-n matrices A and B:

$$\begin{split} &\text{for } (i=0; i < n; i + +) \\ &\text{for } (j=0; j < n; j + +) \\ &\text{for } (k=0; k < n; k + +) \\ & C[i][j] = C[i][j] + A[i][k] * B[k][j]; \end{split}$$

- By convention, matrix problems are measured in terms of n, the number of rows and columns
 - Note that the input size is really 2n², not n
 - Worst-case time is O(n³)
 - Expected-case time is also O(n³)

Remarks

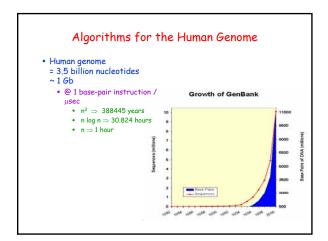
- Once you get the hang of this, you can quickly zero in on what is relevant for determining asymptotic complexity
 - For example, you can usually ignore everything that is not in the innermost loop. Why?
- Main difficulty:
 - Determining runtime for recursive programs

Why Bother with Runtime Analysis?

- Computers are so fast these days that we can do whatever we want using just simple algorithms and data structures, can't we?
- Well...not really; datastructure/algorithm improvements can be a *very big* win
- Scenario:
 - A runs in n² msec
 - A' runs in n²/10 msec
 - B runs in 10 n log n msec

- Problem of size n=103
 - A: 10³ sec ≈ 17 minutes
 - A': $10^2 \sec \approx 1.7 \text{ minutes}$
 - B: 10² sec ≈ 1.7 minutes
- Problem of size n=106
 - A: 10⁹ sec ≈ 30 years
 - A': 10⁸ sec ≈ 3 years
 - B: 2 x 10⁵ sec ≈ 2 days

1 day = 86,400 sec $\approx 10^5$ sec 1,000 days ≈ 3 years



Limitations of Runtime Analysis

- Big-O can hide a large constant
 - Example: Selection
 - Example: small problems
- The specific problem you want to solve may not be the worst case
 - Example: Simplex method for linear programming
- Your program may not be run often enough to make analysis worthwhile
 - Example: one-shot vs. every day
- You may be analyzing and improving the wrong part of the program
 - Very common situation
 - Should use profiling tools

Summary

- Asymptotic complexity
 - Used to measure of time (or space) required by an algorithm
 - Measure of the algorithm, not the problem
- Searching a sorted array
 - Linear search: O(n) worst-case time
 - Binary search: O(log n) worst-case time
- Matrix operations:
 - Note: n = number-of-rows = number-of-columns
 - Matrix-vector product: O(n²) worst-case time
 - Matrix-matrix multiplication: O(n³) worst-case time