

Induction

Lecture 5 CS211 - Fall 2006

Announcements

- North Campus consulting is available on Sundays in the RPCC computer lab
 - Check the course website under consulting for times
 - Consultants will have a "tent card"
- We are still checking on West Campus consulting
- Two sections have been split because of crowding
 - Tue 1:25 (section 2)
 - Wed 12:20 (section 4)
 - See the course website

- Reminder
 - A1 is due at 4:30 today
 - Don't wait until 4:29 to discover that you are not on CMS
- A2 (due Wed 9/20) should appear online before the weekend

Overview

- Recursion
 - A programming strategy that solves a problem by reducing it to simpler or smaller instance(s) of the same problem
- Induction
 - A mathematical strategy for proving statements about natural numbers 0,1,2,... (or more generally, about inductively defined objects)
- Induction and recursion are very closely related

Defining Functions

- It is often useful to write a given function in different ways
 - Let $S: int \rightarrow int$ be the function where S(n) is the sum of the integers from 0 to n. E.g.,

$$S(0) = 0$$
 $S(3) = 0+1+2+3 = 6$

- Definition: iterative form
 - S(n) = 0+1+ ...+ n
- Another characterization: closed form
 - 5(n) = n(n+1)/2

Sum of Squares

- Here is a more complex example.
 - Let SQ: int → int be the function that gives the sum of the squares of integers from 0 to n. E.g.,

$$SQ(0) = 0$$
 $SQ(3) = 02 + 12 + 22 + 32 = 14$

- Definition (iterative form): $SQ(n) = 0^2 + 1^2 + ... + n^2$
- Is there an equivalent closed-form expression?

Closed-Form Expression for SQ(n)

- Sum of integers between 0 through n was n(n+1)/2 which is a *quadratic* in n
- Inspired guess: perhaps sum of squares of integers between 0 through n is a *cubic* in n

- Conjecture: SQ(n) = an³+bn²+cn+d where a, b, c, d are unknown coefficients
- How can we find the values of the four unknowns?
 - Idea: Use any 4 values of n to generate 4 linear equations, and then solve

Finding Coefficients

$$SQ(n) = 0^2+1^2+...+n^2 = an^3+bn^2+cn+d$$

• Use n = 0, 1, 2, 3

SQ(0) = 0 = $a \cdot 0 + b \cdot 0 + c \cdot 0 + d$ SQ(1) = 1 = $a \cdot 1 + b \cdot 1 + c \cdot 1 + d$ SQ(2) = 5 = $a \cdot 8 + b \cdot 4 + c \cdot 2 + d$ SQ(3) = 14 = $a \cdot 27 + b \cdot 9 + c \cdot 3 + d$

Solve these 4 equations to get a = 1/3, b = 1/2, c = 1/6, d = 0

Is the Formula Correct?

• This suggests

$$SQ(n) = 0^2 + 1^2 + ... + n^2$$

= $n^3/3 + n^2/2 + n/6$
= $n(n+1)(2n+1)/6$

- Question: How do we know this closed-form solution is true for all values of n?
 - Remember, we only used n = 0,1,2,3 to determine these coefficients
 - We do not know that the closed-form expression is valid for other values of n

One Approach

- Try a few other values of n to see if they work.
 - Try n = 5: SQ(n) = 0+1+4+9+16+25 = 55
 - Closed-form expression: 5.6.11/6 = 55
 - Works!
- Try some more values...
- Problem: We can never prove validity of the closedform solution for all values of n this way since there are an infinite number of values of n

A Recursive Definition

 To solve this problem, let's express SQ(n) in a different way:

$$SQ(n) = 0^2 + 1^2 + ... + (n-1)^2 + n^2$$

- The part in the box is just SQ(n-1)
- This leads to the following recursive definition

$$SQ(0) = 0$$
 $SQ(n) = SQ(n-1) + n^2, n > 0$

Recursive Case

Thus

$$SQ(4) = SQ(3) + 4^2 = SQ(2) + 3^2 + 4^2 = SQ(1) + 2^2 + 3^2 + 4^2$$

= $SQ(0) + 1^2 + 2^2 + 3^2 + 4^2 = 0 + 1^2 + 2^2 + 3^2 + 4^2$

Are These Two Functions Equal?

• SQ_r (r = recursive)

$$SQ_r(0) = 0$$

 $SQ_r(n) = SQ_r(n-1) + n^2, n > 0$

• SQc (c = closed-form)

$$SQ_c(n) = n(n+1)(2n+1)/6$$

- Assume equally spaced dominos, and assume that spacing between dominos is less than domino length
- How would you argue that all dominos would fall?
- Dumb argument:
 - Domino O falls because we push it over
 - Domino 0 hits domino 1, therefore domino 1 falls
 - Domino 1 hits domino 2, therefore domino 2 falls
 - Domino 2 hits domino 3, therefore domino 3 falls
- ...
- Is there a more compact argument we can make?

Better Argument

- Argument:
 - Domino O falls because we push it over (Base Case or Basis)
 - Assume that domino k falls over (Induction Hypothesis)
 - Because domino k's length is larger than inter-domino spacing, it will knock over domino k+1 (Inductive Step)
 - Because we could have picked any domino to be the kth one, we conclude that all dominoes will fall over (Conclusion)
- This is an inductive argument
- This version is called weak induction
 - There is also strong induction (later)
- Not only is this argument more compact, it works for an arbitrary number of dominoes!

Weak Induction over Integers

- We want to prove that some property P(n) holds for all integers $n \ge 0$
- Inductive argument
 - Basis: Show that property P is true for 0
 - Induction Hypothesis: Assume that P(k) is true for an unspecified integer k
 - Inductive Step: Under this assumption, show that P(k+1)
 - · Conclusion: Because we could have picked any k, we conclude that P(n) holds for all integers $n \ge 0$

$SQ_r(n) = SQ_c(n)$ for all n?

• Define P(n) as $SQ_r(n) = SQ_c(n)$

- Prove P(0)
- Assume P(k) for unspecified k, and then prove P(k+1) under this assumption

Proof (by Induction)

Recall: $SQ_r(0) = 0$ $SQ_r(n) = SQ_r(n-1) + n^2, n > 0$

 $SQ_c(n) = n(n+1)(2n+1)/6$

Let P(n) be the proposition that $SQ_r(n) = SQ_c(n)$

- Basis: P(0) holds because $SQ_r(0) = 0$ and $SQ_c(0) = 0$ by
- Induction Hypothesis: Assume $SQ_{r}(k) = SQ_{r}(k)$ for some k
- Inductive Step:

SQ_r(k+1) = $SQ_r(k) + (k+1)^2$ = $SQ_c(k) + (k+1)^2$ by definition by I.H. $= k(k+1)(2k+1)/6 + (k+1)^2$ by definition = (k+1)(k+2)(2k+3)/6algebra $= SQ_c(k+1)$ by definition

• Conclusion: $SQ_r(n) = SQ_c(n)$ for all $n \ge 0$

Another Example

Prove that 0+1+...+n = n(n+1)/2

- Basis: Obviously holds for n = 0
- Induction Hypothesis: Assume 0+1+...+k = k(k+1)/2
- Inductive Step:

0+1+...+(k+1)= [0+1+...+k] + (k+1)by def = k(k+1)/2 + (k+1)I.H. = (k+1)(k+2)/2algebra

Conclusion: 0+1+...+n = n(n+1)/2 for all n ≥ 0

A Note on Base Cases

- Sometimes we are interested in showing some proposition is true for integers \geq b
- Intuition: we knock over domino b, and dominoes in front get knocked over; not interested in 0,1,...,(b-1)
- In general, the base case in induction does not have to be 0
- If base case is some integer b
 - Induction proves the proposition for n = b, b+1, b+2, ...
 - Does not say anything about n = 0,1,...,b-1

Weak Induction: Nonzero Base Case

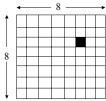
Claim: You can make any amount of postage above 8¢ with some combination of 3¢ and 5¢ stamps

- Basis: True for 8¢: 8 = 3 + 5
- Induction Hypothesis: Suppose true for some $k \ge 8$
- Inductive Step:
 - If used a 5¢ stamp to make k, replace it by two 3¢ stamps. Get k+1.
 - If did not use a 5¢ stamp to make k, must have used at least three 3¢ stamps. Replace three 3¢ stamps by two 5¢ stamps. Get k+1.
- Conclusion: Any amount of postage above 8¢ can be made with some combination of 3¢ and 5¢ stamps

What are the "Dominos"?

- In some problems, it can be tricky to determine how to set up the induction
- This is particularly true for geometric problems that can be attacked using induction

A Tiling Problem



- A chessboard has one square cut out of it
- Can the remaining board be tiled using tiles of the shape shown in the picture (rotation allowed)?
- Not obvious that we can use induction!

Proof Outline

Consider boards of size $2^n \times 2^n$ for n = 1,2,...

- Basis: Show that tiling is possible for 2×2 board
- Induction Hypothesis: Assume the $2^k \times 2^k$ board can be tiled
- Inductive Step: Using I.H. show that the $2^{k+1} \times 2^{k+1}$ board can be tiled
- Conclusion: Any 2n x 2n board can be tiled, n = 1,2,...
 - Our chessboard (8 x 8) is a special case of this argument
 - We have proved the 8 x 8 special case by solving a more general problem!

Basis

2 v 2 hoard

• The 2 \times 2 board can be tiled regardless of which one of the four pieces has been omitted

4 x 4 Case

- Divide the 4 x 4 board into four 2 x 2 sub-boards
- \bullet One of the four sub-boards has the missing piece
 - \blacksquare By the I.H., that sub-board can be tiled since it is a 2 \times 2 board with a missing piece
- Tile the center squares of the three remaining sub-boards as shown
 - This leaves three 2 x 2 boards, each with a missing piece
 - We know these can be tiled by the Induction Hypothesis

2k+1 × 2k+1 case Divide board into four sub-boards and tile the center squares of the three complete sub-boards The remaining portions of the sub-boards can be tiled by the I.H. (which assumes we can tile 2k × 2k boards)

When Induction Fails

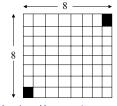
- Sometimes an inductive proof strategy for some proposition may fail
- This does not necessarily mean that the proposition is wrong
 - It may just mean that the particular inductive strategy you are using is the wrong choice
- A different induction hypothesis (or a different proof strategy altogether) may succeed

Tiling Example (Poor Strategy)

Let's try a different induction strategy

- Proposition
 - Any n x n board with one missing square can be tiled
- Problem
 - A 3 x 3 board with one missing square has 8 remaining squares, but our tile has 3 squares; tiling is impossible
- Thus, any attempt to give an inductive proof of this proposition *must fail*
- Note that this failed proof does not tell us anything about the 8x8 case

A Seemingly Similar Tiling Problem



- A chessboard has opposite corners cut out of it. Can the remaining board be tiled using tiles of the shape shown in the picture (rotation allowed)?
- Induction fails here. Why? (Well... for one thing, this board can't be tiled with dominos.)

Strong Induction

- We want to prove that some property P holds for all n
- Weak induction
 - P(0): Show that property P is true for 0
 - $P(k) \Rightarrow P(k+1)$: Show that if property P is true for k, it is true for k+1
 - Conclude that P(n) holds for all n
- · Strong induction
 - P(0): Show that property P is true for 0
 - P(0) and P(1) and ... and $P(k) \Rightarrow P(k+1)$: show that if P is true for numbers less than or equal to k, it is true for k+1
 - Conclude that P(n) holds for all n
- Both proof techniques are equally powerful

Conclusion

- Induction is a powerful proof technique
- Recursion is a powerful programming technique
- Induction and recursion are closely related
 - We can use induction to prove correctness and complexity results about recursive programs