CS211

Computersand Programming
http://www.cs.cor nell.edu/cour ses/cs211/2005su

Lecture9: Trees

Announcements

Assignment 3 will be posted later today, and due next
Tuesday.

Exams will be handed back Friday.

Reading: Continue reading about Linked lists in Weiss
Chapter 17. The examples use Generics from Java 5, so
you should read up on Generics as well. (Don’t worry
about reading 17.5 in great detall)

More Reading: Read about Trees in Weiss Chapter 18.1-
18.3. Don’'t worry about Iterators for now.

Overview

e Tree: recursive data structure

(similar to list) @) 2 @ @
— each cell may have two or more
successors (children) 9 9 9

— each cell has at most one

predecessor (parent) General tree Binary tree

 distinguished cell called root has
no parent

— all cells are reachable from root 6

e Binary tree: tree in which each O ,/@
cell can have at most two @{ @
children @ ‘

Not a tree List-like tree

Terminology

Directed Edge A= B: A Is said
to be parent of B, and B is said
to be its child

Generalization of parent and
child: ancestor and descendant
— root and A are ancestors of B Left sub-tree of root

Leaf node: node with no
descendants

Depth of node: length of path
from root to that node

— depth(A) =1 depth(B) =2
Height of node: length of Binary tree
longest path from node to leaf

— height(A) =1 height(B) =0
Height of tree = height of root
— in example, height of tree = 2

Root of tree

Right sub-tree of root

Class for binary tree cells

class TreeCell {
protected Object datum;
protected TreeCell left;
protected TreeCell right;

public TreeCell(Object 0) {
datum = o;
}
public TreeCell(Object o, TreeCell |, TreeCell r) {
datum = o;
left = I;
right =r;
}
methods called getDatum, setDatum,
getLeft, setLeft, getRight, setRight
with obvious code

Class for general trees

(4) (@
class GTreeCell{
protected Object datum; ﬂ 9 9
protected GTreeCell left; é

& ® W

protected GTreeCell sibling;
....appropriate getter and setter methods

] General tree
» Parent node points directly only to its leftmost child. @ _______ @

 Leftmost child has pointer to next sibling which points
to next sibling etc.
<’§,

Cg’ @

Tree represented using GTreeCell

Applications of trees

Most languages (natural and computer) have a
recursive, hierarchical structure.

This structure is implicit in ordinary textual
representation.

Recursive structure can be made explicit by
representing sentences in the language as
trees: abstract syntax trees (AST'S)

AST’s are easier to optimize, generate code
from, etc. than textual representation.

Converting textual representations to AST: job of
parser

Example

. Expre§S|on grammar: Text Tree representation
E-¥» integer

E—» (E + E) 34
 Tree representation:
— first rule: create a node with

integer (2 +3)
— second rule: create a node with
“+” as datum, tree for first

operand as its left sub-tree, and
tree for second operand as its
right sub-tree

e In textual representation,
parentheses show hierarchical ~ ((2+3) + (5+7))
structure. In tree representation, \

hierarchy is explicit in the
structure of the tree. \ \

AST generation
for simple expression language

static TreeCell expCodeGen(String fileName) {//returns AST for expression in file
CS211Inf =new CS211In(fileName);

return getExp(f); //no error checking to keep things simple

}

static TreeCell getExp(CS211Inf) {//no error checking to keep it ssimple
switch (f.peekAtKind()) {

case CS211In.INTEGER: //E=$> integer
return new TreeCell(f.getInt());
case CS211In.OPERATOR: //[E=$> (E+E)

{ f.check(‘(‘);
TreeCell left = getExp(f);
f.check(‘+');
TreeCell right = getExp(f);
f.check(‘));
return new TreeCell(“+”, left, right);

}

default: return null; //error

}

Recursion on trees

* Recursive methods can be written to
operate on trees in the obvious way.

e In most problems

— base case: empty tree
e sometimes base case is leaf node
— recursive case: solve problem on left and right

sub-trees, and then put solutions together to
compute solution for tree

Tree search

 Analog of linear search in lists: given tree
and an object, find out if object is stored In
tree.

Trivial to write recursively; much harder to
write iteratively.

If (t == null) return false;

else return t.getDatum().equals(0) || \
treeSearch(o, t.getleft()) || g Q
treeSearch(o, t.getRight()); \@ \®
} 2 5

public static boolean treeSearch(Object o, TreeCell t) { ‘/@

Walks of tree

 Example on last 5 .
slide showed pre- 7@&
order walk of tree:

— process root @fg \@ @f® \@
— process left sub-tree
— process right sub-tree

public static boolean

e Intuition: think of treeSearch(Object o, TreeCell t) {
: : If (t == null) return false;
preflx representatlon else return t.getDatum().equals(o) ||
of expressions treeSearch(o, t.getleft()) ||

treeSearch(o, t.getRight());

In-order and post-order walks

In-order walk: infix

— process left sub-tree
— process root

— process right sub-tree

Post-order walk: postfix
— process left sub-tree
— process right sub-tree
— process root

public static boolean treeSearch(Object o,
TreeCell t) {
If (t == null) return false;
else return
treeSearch(o, t.getleft()) ||
t.getDatum().equals(o) ||
treeSearch(o, t.getRight());

public static boolean treeSearch(Object o,
TreeCell t) {
if (t == null) return false;
else return
treeSearch(o, t.getleft()) ||
treeSearch(o, t.getRight())||
t.getDatum().equals(o);

Some useful routines

//determine is a TreeCell is a leaf node
public static boolean isLeaf(TreeCell t) {

return (t !'= null) && (t.getLeft() == null) && (t.getRight() == null);
}

//[compute height of tree using post-order walk
public static int height(TreeCell t) {
if (t == null) return —1; //height is undefined for empty tree
if (isLeaf(t)) return O;
else return 1 + Math.max(height(t.getLeft()), height(t.getRight()));

}

/[compute number of nodes in tree using post-order walk
public static int nNodes(TreeCell t) {

if (t == null) return O;

else return 1 + nNodes(t.getLeft()) + nNodes(t.getRight());
}

Example

* Generate textual representation from AST.

public static String flatten(TreeCell t) {
if (t == null) return *”;
If (isLeaf(t)) return t.getDatum();
else return “(“ + flatten(t.getLeft()) + t.getDatum() + flatten(t.getRight()) +)" ;

@@Qj;%

Useful facts about binary trees

e Maximum number of
nodes at depth d = 24

e If height of tree is h, L (@) (2
— minimum number of nodes it é

can have = h+1 2 (8)(0) (@)
— maximum number of nodes Height 2,
it can have is = maximum number of nodes
20+ 21 + 4+ 2h=2h+1 1 @\
 Full binary tree of height h: (2)
— all levels of tree upto depth
h are completely filled. (4)

Height 2,
minimum number of nodes

Tree with header element

e AS |

n case of lists, some authors prefer to

have an explicit Tree class which contains
a reference to the root of the tree.

 With this design, methods that operate on
trees can be made Into instance methods
In this class, and the root of the tree does

not
met

e Fee

nave to be passed in explicitly to
nod.

free to use whatever works for you.

Tree with parent pointers

* In some applications, it is
useful to have trees in which
nodes other than root have

references to their parents. }5%
¢
(D (8

e Tree analog of doubly-linked
lists.

class TreeWithPPCell
protected Object datum,;

protected TreeWithPPCell
left, right, parent;

..... appropriate getter and
setter methods...

}

Summary

e Tree Is a recursive data structure built from
TreeCell class.

— special case: binary tree

* Binary tree cells have both a left and a right
‘successor”
— called children rather than successors
— similarly, parent rather than predecessor
— generalization of parent and child to ancestors and

descendants

* Trees are useful for exposing the recursive
structure of natural language programs and
computer programs.

