CS211

Computersand Programming
http://www.cs.cor nell.edu/cour ses/cs211/2005su

L ecture 8: Lists

Announcements

Assignment 1 Programming solutions and Quiz
solutions will be posted soon.

Prelim 1 tomorrow — don’t forget! Study topics:
nduction, Recursion, OOP, and Inheritance

or ot ect ed and packages...

Assignment 2 due Wednesday

Reading for today’s lecture: Weiss 2.4.2, 2.4.3,
and 6.1 - 6.5 (read this carefully, because it
explains iterators)

History of List Processing in CS

List languages first developed for Al

LISP: List Processing Language

— Developed in 50-60’s by John McCarthy et al.

LL: List Language

— Developed in 50’s by Allen Newell and Herb Simon

Lists and list processing fundamental part of language
— lists are primitive data type

— functions operate directly on lists
— program itself expressed as list of lists

“car”: contents address register (getDatum())
“cdr”: contents decrement register (getNext())
“caddr” = (car (cdr (cdr list))) = object in 3rd element

Overview

e Arrays
— Random access: :)
— Fixed size: cannot grow on demand after creation: : >((

« Characteristics of some applications:

— do not need random access

— require a data structure that can grow and shrink dynamically to
accommodate different amounts of data

b Lists satisfy this requirement.

e Let us study
— list creation
— accessing elements in a list
— Inserting elements into a list
— deleting elements from a list

List Operations

 ADT (Abstract Data Type):

— Specify public functionality
— Hide implementation detail from users
— Allows us to improve/replace implementation
— Forces us to think about fundamental operations Interface)
separately from the implementation
e List Operations:
— Create
— Insert object
— Delete object
— Find object
— Get Length, Full?, Empty?, Replace Object, ...
— Usually sequential access (not random access)

List Data Structures

 Implemented using arrays
— Size of array
— Number of elements in list
— Inserts & Deletes require moving elements
— Must copy array when it gets full

* Implemented using Java Vectors
— Import java.util.Vector (or java.util.*)
— Size automatically expands as necessary
— Automatically maintains number of elements
— Inserts & Deletes still require moving elements
 Implemented as sequence of linked cells
— We’'ll focus on this kind of implementation

Lists

 Listis a sequence of cells in o1 2 3 4
which each cell contains Array a —| 24| -7 |87 |78 |99
— a data item of type Object

— a reference to the next cell in 0
the sequence

o null if this is the last cell in the .
sequence List |

— empty list: null
e Listis a sequential-access
data structure
— to access data in position n of

seguence, we must access
cells 0..n-1

 We will define a class called
ListCell from which we will
build lists. Note: The following
code doesn’t use generics.

our synbol
for null

Class ListCell
class ListCell { ListCell

protected Object datum; 4 N\
protected ListCell next; datum | Object:
public ListCell(Object o, ListCell n){ next | ListCell:
datum = o;
o getDatum
next = n;
} getNext
public Object getDatum() {//sometimes called car
return datum:; setDatum
) . _ _ setNext
public ListCell getNext() {//sometimes called cdr, tail, rest _ -
return next;
}
public void setDatum(Object o) {//sometimes called rplaca
datum = o;
} By convention,
public void setNext(ListCell I) {//sometimes called rplacd we will not show
next = [; the instance methods
when drawing cells.
} hen drawing cell

}

Building a list

| | | [ListCell: |
ListCell | = new ListCell(new Integer(24), null); \‘ﬁ
To keep things simple, we will not show Integer objects 1
explicitly in our pictures, but only show the value contained —
in them.
Integer t = new Integer(24); p |ListCell:

Integer s = new Integer(-7);
Integer e = new Integer(87);

One way:

ListCell p = new ListCell(t, new ListCell(s, new ListCell(e,null)));

Building a list (contd.)

Another way: Heap

Integer t = new Integer(24);
Integer s = new Integer(-7);

Integer e = new Integer(87); g
IE———,

ListCell p = new ListCell(e,null); p|ListCell: -

p = new ListCell(s,p); \

p = new ListCell(t,p); T

Note: assignment of form p = new ListCell(s,p); does not
create a circular list.

Accessing list elements

p [ListCell:

Lists are sequential-access data structures.

— to access the contents of cell n in sequence, you must access
cells 0..n-1

Accessing data in first cell: p.getDatum()
Accessing data in second cell: p.getNext().getDatum()
Accessing next field in second cell: p.getNext().getNext()

Heap

Writing to fields in cells can be done the same way
— p.setDatum(new Integer(53));//update data field of first cell
— p.getNext().setDatum(new Integer(53));//update field of second cell
— p.getNext().setNext(null);//chop off third cell

Access example: linear search

/[scan list looking for object o and return true if found
public static boolean search(Object o, ListCell I) {
for (ListCell current = I; current !'= null; current = current.getNext())
if (current.getDatum().equals(0)) return true;
//drop out of loop if object not found
return false;

ListCell p = new ListCell(“hello”, new ListCell(“dolly”, new ListCell(“polly”, null)));

search(“dolly”, p); //returns true
search(“molly”, p); //returns false
search(“dolly”, null); //returns false

//lhere is another version. Why does this work? Draw stack picture to understand.
public static boolean search(Object o, ListCell I) {
for (; I '= null; I =l.getNext())
if (l.getDatum().equals(0)) return true;
//drop out of loop if object not found
return false;

Recursion on lists

e Recursion can be done on lists
— similar to recursion on integers

* Almost always
— base case: empty list

— recursive case:. assuming you can solve problem on
(smaller) list obtained by eliminating first cell, write
down solution for list

 Many list problems can be solved very simply by
using this idea.

— Some problems though are easier to solve iteratively.

Recursion example: linear search

 Base case: empty list
— return false

e Recursive case: non-empty list
— If data in first cell equals object o, return true
— else return result of doing linear search on rest of list

public static boolean recursiveSearch(Object o, ListCell I) {
if (I == null) return false,
else return l.getDatum().equals(o) || recursiveSearch(o, l.getNext());

}

Execution of recursive program

public static boolean recursiveSearch(Object o, ListCell) {
if (I == null) return false;

else return l.getDatum().equals(o) || recursiveSearch(o, l.getNext());
}
0 v
| 7'
rv| false
0 P—
| a—
rv| false
0 —
|]
r'v| false
0]
|]
rv| false

Heap

lteration Is sometimes better

* Given a list, create a new list with elements In
reverse order from input list.

/lintuition: think of reversing a pile of coins

public static ListCell reverse(ListCell |) {
ListCell rev = null ;

for (; 1'!'=null; | = l.getNext())
rev = new ListCell(l.getDatum(), rev);
return rev;,
}

* Itis not obvious how to write this simply in a
recursive divide-and-conquer style.

Special Cases to Worry About

Empty list

— add

— find

— delete?(!)

Front of list

— Insert

End of list

— find

— delete

Lists with just one element

List with header

e Some authors prefer to have a List class
that Is distinct from ListCell class.

* List object is like a head element that
always exists even If list itself Is empty.

class List {
protected ListCell head;
public List (ListCell I) {
head = |;

}
public ListCell getHead()

Variations of list with header

* Header can also
keep other info head
— reference to last cell /
oflist e >
head| |
— number of elements tai
In list
— search/insertion/ T =
deletion as instance
methods head
tail | |
T e Size\i

Heap

Example of use of List class

Let us write code to
— insert object into unsorted list
— delete the first occurrence of an object in an unsorted list.

We will use the List class to show how to use this class.
— Itis just as easy to write code without the header element.

Methods for insertion/deletion will be instance methods
In the List class.

signatures:

public void insert(Object 0);

public void delete(Object 0);
Invocation:

p.insert(o); p.delete(o);

Insertion INto list

List
head:[ListCell;/, |

Let us write two insert methods

— insert at head of list

class List{ p |List:
protected ListCell head,;

public void insertHead(Object 0) {
head = new ListCell(o,head);

}
}

— insert at tail of list

public void insertTail(Object 0) {
if (head == null)
head = new ListCell(o,null);
else {// find end of list
ListCell current = head;//cursor into list
while(current.getNext() '= null)
current = current.getNext();
current.setNext(new ListCell(o,null));
}
}
Invocation
— p.insertHead(new Integer(54));
— p.insertTail(new Integer(54));

Example of use of insert methods

List p = new List(null); //create List object with empty list
p.insertHead(new Integer(-7)); //list now contains -7
p.insertHead(new Integer(24));//list contains 24 and -7

p.insertTail(new Integer(87));
...... LISt
/@[ListCell l\b

p |List

Heap

Remove first item from list

[lextract first element of list
public Object deleteFirst(){
//if list is not empty
if (head !=null) {
Object t = head.getDatum();
head = head.getNext();
return t;
}
//otherwise, attempt to get from empty list
else return "error";

Remove last item on list

/llextract last element of list
public Objgct deleteLast(){ p |List: —]
if (head == null) return "error";

/lonly one element in list? \

if (head.getNext() == null) { (ListCell
Object t = head.getDatum(); head: [']

head = null; /
return t;

<«— current

}

//at least two elements in list

/lcurrent and scout are cursors into list

//both advance in lock step, scout is one cell ahead
//stop if scout points to last cell

ListCell current = head;

ListCell scout = head.getNext();

while (scout.getNext() !'= null){

_ . <«— Scout
current = scout; <«— current
scout = scout.getNext();

}
current.setNext(null):;//remove last cell from list (?)
<+«— Scout

return scout.getDatum();

Delete object from list

Delete first occurrence of object o from list |
Recursive delete
terative delete

Intuitive idea of recursive code:
— If list | is empty, return null.
— If first element of | is 0, return rest of list I.

— Otherwise, return list consisting of first element of |,
and list that results from deleting o from rest of list I.

Recursive code for delete

class List{
protected ListCell head,;

public void delete(Object 0) {
head = deleteRecursive(o, head);
}
public static ListCell deleteRecursive(Object o, ListCell I) {
//if list Is empty, nothing to do
iIf (I == null) return null;
//lotherwise check first element of list
else if (l.getDatum().equals(0))
return l.getNext();
//lotherwise delete o from rest of list and update next field of |
else {l.setNext(deleteRecursive(o, l.getNext()));
return [

}

lterative delete

head: [ListCell; - |

Two steps: /
— locate cell that is the List
p |List:
predecessor of cell to be <— current
deleted
» keep two cursors, scout and
current, that traverse the list in «
’ scout
lock step «— current
« scout is always one cell ahead
of current

e current starts at head of list

» stop when scout finds cell
Fotntaining 0, or falls off end of
S
— If scout finds cell, update next
field of current cell to next field
of scout cell to splice out object —
o from list

delete 36 from list

lterative code for delete

public void delete(Object o) {
[lempty list?
if (head == null) return;
/lis first element equal to o; if so splice first cell out
if (head.getDatum().equals(0)) {

head = head.getNext();
return;

}
/lwalk down list; at end of loop,

//scout will be point to first cell containing o, if any
ListCell current = head,;

ListCell scout = head.getNext();

while ((scout != null) && ! scout.getDatum().equals(0)) {
current = scout;

scout = scout.getNext();
}

if (scout !'= null) //found occurrence of o
current.setNext(scout.getNext()); //splice out cell containing o

Insertion and deletion Iinto
sorted lists

Assume that we have a GisiCall
list of Comparables '
sorted in increasing
order.

We want to splice a new
Comparable into this list,
keeping new list in sorted
order as shown in figure.

Code shows recursive -
code for insertion and
deletion.

We will show code that
uses ListCell class
directly.

Recursive insertion

Let us use notation [f,n] to denote ListCell whose
e datum is f
e nextisn
Pseudo-code:
iInsert (Comparable c, ListCell I):
If | is null return new ListCell(c,null);
else
suppose lis [f,n]
If (c <f) return new ListCell(c,l);
else return new ListCell(f, insert(c,n));

Compactly:
iInsert(c,null) = [c,null]
iInsert(c,[f,n]) = [c,[f,n]] ifc<f
f, Insert(c,n)] ifc>=f

/lrecursive insert and delete into a list sorted in increasing order

public static ListCell insertRecursive(Comparable c, ListCell |) {
if ((1 == null) || (c.compareTo(l.getDatum()) < 0))
return new ListCell(c, I);
else {l.setNext(insertRecursive(c,l.getNext()));
return |,

}
}

public static ListCell deleteRecursive(Comparable c, ListCell I) {
if ((I ==null) || (c.compareTo(l.getDatum()) < 0))
return I;
if (c.compareTo(l.getDatum()) == 0)
return l.getNext();//assume no duplicates
else {l.setNext(deleteRecursive(c,l.getNext()));
return |;

}

}
« Will insertRecursive allow us to insert duplicates?

e Suppose we want to delete duplicates as well?

[literative insert, delete is similar

public static ListCell insertlter(Comparable c, ListCell |) {
/llocate cell that must point to new cell containing c
/[after insertion is done

ListCell before = scan(c,l);
if (before == null) return new ListCell(c,l);

before.setNext(new ListCell(c,before.getNext()));
return |,

}

protected static ListCell scan(Comparable c, ListCell 1){
ListCell before = null; //Cursor “before” is one cell behind cursor “I”
for (; I '= null; 1 = l.getNext()) {

if (c.compareTo(l.getDatum()) < 0) return before;
else before =1;

}

//if we reach here, 0 is not in list
return null;

}

Doubly-linked lists

e In some applications, it Is convenient to
have a ListCell that has references to both
Its predecessor and Its successor In the

list.
(m%
) = p
=
class DLLCell { — 6 f 45 f\ 8 -9
protected Object datum; N > N

protected DLLCell next; next 1
protected DLLCell previous;

e In general, it Is easier to work with doubly-
linked lists than with lists.

* For example, reversing a DLL can be done
simply by swapping the previous and next
fields of each cell.

 Trade-off: DLLs require more heap space
than singly-linked lists.

Fancy Lists

2-D lists:

— references to cells left, right, up, down
3-D lists, ...

Rings, pipes, torus lists

Lists of Lists (Nested lists)

— ((This is a sentence.)
(This is a sentence, too.)
(This is another sentence.)

)

Summary

Lists are sequences of ListCell elements

— recursive data structure

— grow and shrink on demand

— not random-access but sequential access data structures
List operations:

— create a list

— access a list and update data

— change structure of list by inserting/deleting cells
e Cursors

Recursion makes perfect sense on lists. Usually
— base case: empty list

— recursive case: non-empty list

Sub-species of lists

— list with header

— doubly-linked lists

