
CS 211

Computers and Programming
http://www.cs.cornell.edu/courses/cs211/2005su

Lecture 8: Lists

Announcements

• Assignment 1 Programming solutions and Quiz
solutions will be posted soon.

• Prelim 1 tomorrow – don’t forget! Study topics:
Induction, Recursion, OOP, and Inheritance

• protected and packages…

• Assignment 2 due Wednesday
• Reading for today’s lecture: Weiss 2.4.2, 2.4.3,

and 6.1 - 6.5 (read this carefully, because it
explains iterators)

History of List Processing in CS

• List languages first developed for AI
• LISP: List Processing Language

– Developed in 50-60’s by John McCarthy et al.

• LL: List Language
– Developed in 50’s by Allen Newell and Herb Simon

• Lists and list processing fundamental part of language
– lists are primitive data type
– functions operate directly on lists
– program itself expressed as list of lists

• “car”: contents address register (getDatum())
• “cdr”: contents decrement register (getNext())
• “caddr” = (car (cdr (cdr list))) = object in 3rd element

Overview

• Arrays
– Random access: :)
– Fixed size: cannot grow on demand after creation: : >((

• Characteristics of some applications:
– do not need random access
– require a data structure that can grow and shrink dynamically to

accommodate different amounts of data
⇒ Lists satisfy this requirement.

• Let us study
– list creation
– accessing elements in a list
– inserting elements into a list
– deleting elements from a list

List Operations
• ADT (Abstract Data Type):

– Specify public functionality
– Hide implementation detail from users
– Allows us to improve/replace implementation
– Forces us to think about fundamental operations Interface)

separately from the implementation

• List Operations:
– Create
– Insert object
– Delete object
– Find object
– Get Length, Full?, Empty?, Replace Object, …
– Usually sequential access (not random access)

List Data Structures
• Implemented using arrays

– Size of array
– Number of elements in list
– Inserts & Deletes require moving elements
– Must copy array when it gets full

• Implemented using Java Vectors
– import java.util.Vector (or java.util.*)
– Size automatically expands as necessary
– Automatically maintains number of elements
– Inserts & Deletes still require moving elements

• Implemented as sequence of linked cells
– We’ll focus on this kind of implementation

Lists
• List is a sequence of cells in

which each cell contains
– a data item of type Object
– a reference to the next cell in

the sequence
• null if this is the last cell in the

sequence
– empty list: null

• List is a sequential-access
data structure
– to access data in position n of

sequence, we must access
cells 0..n-1

• We will define a class called
ListCell from which we will
build lists. Note: The following
code doesn’t use generics.

24 -7 87 78 99

24

-7

87

78

99

Array a

List l

0 1 2 3 4

0

1

2

3

4

our symbol
for null

Class ListCell
class ListCell {

protected Object datum;
protected ListCell next;

public ListCell(Object o, ListCell n){
datum = o;
next = n;

}
public Object getDatum() {//sometimes called car

return datum;
}
public ListCell getNext() {//sometimes called cdr, tail, rest

return next;
}
public void setDatum(Object o) {//sometimes called rplaca

datum = o;
}
public void setNext(ListCell l) {//sometimes called rplacd

next = l;
}

}

datum Object:

next ListCell:

getDatum

getNext

setDatum

setNext

By convention,
we will not show
the instance methods
when drawing cells.

ListCell

Building a list

ListCell l = new ListCell(new Integer(24), null); 24

24

-7

87

Integer t = new Integer(24);
Integer s = new Integer(-7);
Integer e = new Integer(87);

ListCell p = new ListCell(t, new ListCell(s, new ListCell(e,null)));

One way:

p ListCell:

l ListCell:

Heap

To keep things simple, we will not show Integer objects
explicitly in our pictures, but only show the value contained
in them.

Building a list (contd.)

24

-7

87

Integer t = new Integer(24);
Integer s = new Integer(-7);
Integer e = new Integer(87);

ListCell p = new ListCell(e,null);
p = new ListCell(s,p);
p = new ListCell(t,p);

p ListCell:

HeapAnother way:

Note: assignment of form p = new ListCell(s,p); does not
create a circular list.

Accessing list elements

• Lists are sequential-access data structures.
– to access the contents of cell n in sequence, you must access

cells 0..n-1

• Accessing data in first cell: p.getDatum()
• Accessing data in second cell: p.getNext().getDatum()
• Accessing next field in second cell: p.getNext().getNext()

• Writing to fields in cells can be done the same way
– p.setDatum(new Integer(53));//update data field of first cell
– p.getNext().setDatum(new Integer(53));//update field of second cell
– p.getNext().setNext(null);//chop off third cell

24

-7

87

p ListCell:

Heap

Access example: linear search
//scan list looking for object o and return true if found
public static boolean search(Object o, ListCell l) {

for (ListCell current = l; current != null; current = current.getNext())
if (current.getDatum().equals(o)) return true;

//drop out of loop if object not found
return false;

}
…..
ListCell p = new ListCell(“hello”, new ListCell(“dolly”, new ListCell(“polly”, null)));
search(“dolly”, p); //returns true
search(“molly”, p); //returns false
search(“dolly”, null); //returns false

….
//here is another version. Why does this work? Draw stack picture to understand.
public static boolean search(Object o, ListCell l) {

for (; l != null; l =l.getNext())
if (l.getDatum().equals(o)) return true;

//drop out of loop if object not found
return false;

}

Recursion on lists

• Recursion can be done on lists
– similar to recursion on integers

• Almost always
– base case: empty list
– recursive case: assuming you can solve problem on

(smaller) list obtained by eliminating first cell, write
down solution for list

• Many list problems can be solved very simply by
using this idea.
– Some problems though are easier to solve iteratively.

Recursion example: linear search

• Base case: empty list
– return false

• Recursive case: non-empty list
– if data in first cell equals object o, return true
– else return result of doing linear search on rest of list

public static boolean recursiveSearch(Object o, ListCell l) {
if (l == null) return false;
else return l.getDatum().equals(o) || recursiveSearch(o, l.getNext());

}

Execution of recursive program

24

-7

87

Heaprv
l

o

rv
l

o

rv
l

o

rv
l

o
36

false

public static boolean recursiveSearch(Object o, ListCell l) {
if (l == null) return false;
else return l.getDatum().equals(o) || recursiveSearch(o, l.getNext());

}

false

false

false

Iteration is sometimes better

• Given a list, create a new list with elements in
reverse order from input list.

//intuition: think of reversing a pile of coins
public static ListCell reverse(ListCell l) {

ListCell rev = null ;
for (; l != null; l = l.getNext())

rev = new ListCell(l.getDatum(), rev);
return rev;

}

• It is not obvious how to write this simply in a
recursive divide-and-conquer style.

Special Cases to Worry About

• Empty list
– add
– find
– delete?(!)

• Front of list
– insert

• End of list
– find
– delete

• Lists with just one element

List with header
• Some authors prefer to have a List class

that is distinct from ListCell class.
• List object is like a head element that

always exists even if list itself is empty.
class List {

protected ListCell head;
public List (ListCell l) {

head = l;
}
public ListCell getHead()
………..

public void setHead(ListCell l)
………..

}

24

-7

87

Heap

head
List

Variations of list with header

• Header can also
keep other info
– reference to last cell

of list
– number of elements

in list
– search/insertion/

deletion as instance
methods

– …..

24

-7

87

Heap

head
List

List

head
tail

head
List

tail

size 3

Example of use of List class

• Let us write code to
– insert object into unsorted list
– delete the first occurrence of an object in an unsorted list.

• We will use the List class to show how to use this class.
– It is just as easy to write code without the header element.

• Methods for insertion/deletion will be instance methods
in the List class.

• signatures:
public void insert(Object o);
public void delete(Object o);

• invocation:
p.insert(o); p.delete(o);

Insertion into list
• Let us write two insert methods

– insert at head of list
class List{

protected ListCell head;
……..
public void insertHead(Object o) {

head = new ListCell(o,head);
}

}

– insert at tail of list
……..
public void insertTail(Object o) {

if (head == null)
head = new ListCell(o,null);

else {// find end of list
ListCell current = head;//cursor into list
while(current.getNext() != null)

current = current.getNext();
current.setNext(new ListCell(o,null));

}
}

• Invocation
– p.insertHead(new Integer(54));
– p.insertTail(new Integer(54));

-7

24

87

p List:

36

:head: ListCell:

54

List

Example of use of insert methods

…..
List p = new List(null); //create List object with empty list
p.insertHead(new Integer(-7)); //list now contains -7
p.insertHead(new Integer(24));//list contains 24 and -7
p.insertTail(new Integer(87));
……

24

-7

87

Heap

head
List

p List

ListCell

Remove first item from list

//extract first element of list
public Object deleteFirst(){

//if list is not empty
if (head != null) {

Object t = head.getDatum();
head = head.getNext();
return t;
}

//otherwise, attempt to get from empty list
else return "error";

}

Remove last item on list
//extract last element of list
public Object deleteLast(){

if (head == null) return "error";
//only one element in list?
if (head.getNext() == null) {

Object t = head.getDatum();
head = null;
return t;

}
//at least two elements in list
//current and scout are cursors into list
//both advance in lock step, scout is one cell ahead
//stop if scout points to last cell
ListCell current = head;
ListCell scout = head.getNext();
while (scout.getNext() != null){

current = scout;
scout = scout.getNext();

}
current.setNext(null);//remove last cell from list
return scout.getDatum();

}

-7

24

87

p List:

36

current

scout

:head: ListCell:

current

scoutcurrent

scout
(?)

Delete object from list

• Delete first occurrence of object o from list l
• Recursive delete
• Iterative delete

• Intuitive idea of recursive code:
– If list l is empty, return null.
– If first element of l is o, return rest of list l.
– Otherwise, return list consisting of first element of l,

and list that results from deleting o from rest of list l.

Recursive code for delete
class List{

protected ListCell head;
…….
public void delete(Object o) {

head = deleteRecursive(o, head);
}
public static ListCell deleteRecursive(Object o, ListCell l) {

//if list is empty, nothing to do
if (l == null) return null;
//otherwise check first element of list
else if (l.getDatum().equals(o))

return l.getNext();
//otherwise delete o from rest of list and update next field of l
else {l.setNext(deleteRecursive(o, l.getNext()));

return l;
}

}
}

Iterative delete
• Two steps:

– locate cell that is the
predecessor of cell to be
deleted

• keep two cursors, scout and
current, that traverse the list in
lock step

• scout is always one cell ahead
of current

• current starts at head of list
• stop when scout finds cell

containing o, or falls off end of
list

– if scout finds cell, update next
field of current cell to next field
of scout cell to splice out object
o from list

-7

24

87

p List:

36

current

scout
current

scout

delete 36 from list

:head: ListCell:

Iterative code for delete
public void delete(Object o) {

//empty list?
if (head == null) return;
//is first element equal to o; if so splice first cell out
if (head.getDatum().equals(o)) {

head = head.getNext();
return;
}

//walk down list; at end of loop,
//scout will be point to first cell containing o, if any
ListCell current = head;
ListCell scout = head.getNext();
while ((scout != null) && ! scout.getDatum().equals(o)) {

current = scout;
scout = scout.getNext();

}
if (scout != null) //found occurrence of o

current.setNext(scout.getNext()); //splice out cell containing o
}

Insertion and deletion into
sorted lists

• Assume that we have a
list of Comparables
sorted in increasing
order.

• We want to splice a new
Comparable into this list,
keeping new list in sorted
order as shown in figure.

• Code shows recursive
code for insertion and
deletion.

• We will show code that
uses ListCell class
directly.

-7

24

87

p ListCell:

36

Recursive insertion
Let us use notation [f,n] to denote ListCell whose

• datum is f
• next is n

Pseudo-code:
insert (Comparable c, ListCell l):

if l is null return new ListCell(c,null);
else

suppose l is [f,n]
if (c < f) return new ListCell(c,l);
else return new ListCell(f, insert(c,n));

Compactly:
insert(c,null) = [c,null]
insert(c,[f,n]) = [c,[f,n]] if c < f

[f, insert(c,n)] if c >= f

//recursive insert and delete into a list sorted in increasing order

public static ListCell insertRecursive(Comparable c, ListCell l) {
if ((l == null) || (c.compareTo(l.getDatum()) < 0))

return new ListCell(c, l);
else {l.setNext(insertRecursive(c,l.getNext()));

return l;
}

}

public static ListCell deleteRecursive(Comparable c, ListCell l) {
if ((l == null) || (c.compareTo(l.getDatum()) < 0))

return l;
if (c.compareTo(l.getDatum()) == 0)

return l.getNext();//assume no duplicates
else {l.setNext(deleteRecursive(c,l.getNext()));

return l;
}

}
• Will insertRecursive allow us to insert duplicates?
• Suppose we want to delete duplicates as well?

//iterative insert, delete is similar
public static ListCell insertIter(Comparable c, ListCell l) {

//locate cell that must point to new cell containing c
//after insertion is done
ListCell before = scan(c,l);
if (before == null) return new ListCell(c,l);
before.setNext(new ListCell(c,before.getNext()));
return l;

}
protected static ListCell scan(Comparable c, ListCell l){

ListCell before = null; //Cursor “before” is one cell behind cursor “l”
for (; l != null; l = l.getNext()) {

if (c.compareTo(l.getDatum()) < 0) return before;
else before = l;

}
//if we reach here, o is not in list
return null;

}

Doubly-linked lists
• In some applications, it is convenient to

have a ListCell that has references to both
its predecessor and its successor in the
list.

6 45 8 -9

next

previous

class DLLCell {
protected Object datum;
protected DLLCell next;
protected DLLCell previous;
…..

}

• In general, it is easier to work with doubly-
linked lists than with lists.

• For example, reversing a DLL can be done
simply by swapping the previous and next
fields of each cell.

• Trade-off: DLLs require more heap space
than singly-linked lists.

Fancy Lists

• 2-D lists:
– references to cells left, right, up, down

• 3-D lists, …
• Rings, pipes, torus lists
• Lists of Lists (Nested lists)

– ((This is a sentence.)
(This is a sentence, too.)
(This is another sentence.)
…)

Summary
• Lists are sequences of ListCell elements

– recursive data structure
– grow and shrink on demand
– not random-access but sequential access data structures

• List operations:
– create a list
– access a list and update data
– change structure of list by inserting/deleting cells

• cursors
• Recursion makes perfect sense on lists. Usually

– base case: empty list
– recursive case: non-empty list

• Sub-species of lists
– list with header
– doubly-linked lists

