
CS 211

Computers and Programming
http://www.cs.cornell.edu/courses/cs211/2005su

Lecture 7: Interfaces, Subtypes, and Comparable

Announcements
• Assignment 2 is finally up. Look through it before

tomorrow, so you can ask questions.
• Quiz tomorrow on OOP, Inheritance, and Interfaces.
• Assignment 1 will be graded soon.
• Prelim 1 on first two weeks of material, in class on

Tuesday.
• Assignment 2 is due Wednesday, but it’s a good idea

to complete it before the exam.

Interfaces

• So far, we have talked about interfaces
informally, in the English sense of the word
– an interface describes how a client interacts with a

class
– method names, argument/return types, fields

• Java has a construct called interface
which can be used formally for this purpose

Java interface

• name of interface:
IPuzzle

• a class implements
this interface by
implementing
public instance
methods as
specified in the
interface

• the class may
implement other
methods

interface IPuzzle {
void scramble();
int tile(int r, int c);
boolean move(char d);

}

class IntPuzzle implements IPuzzle {

public void scramble() {
... }

public int tile(int r, int c) {
... }

public boolean move(char d) {
... }

}

Notes
• An interface is not a class!

– cannot be instantiated
– incomplete specification

• class header must assert implements I for Java
to recognize that the class implements interface I

• A class may implement several interfaces:
class X implements IPuzzle, IPod {
... }

Why an interface construct?

• good software engineering
– specify and enforce boundaries between

different parts of a team project

• can use interface as a type
– allows more generic code
– reduces code duplication

Example of code duplication

• Suppose we have two implementations of
puzzles:
– class IntPuzzle uses an int to hold state
– class ArrayPuzzle uses an array to hold state

• Assume client wants to use both
implementations
– perhaps for benchmarking both implementations

to pick the best one
– client code has a display method to print out

puzzles
• What would the display method look like?

Class Client{
IntPuzzle p1 = new IntPuzzle();
ArrayPuzzle p2 = new ArrayPuzzle();
...display(p1)...display(p2)...

public static void display(IntPuzzle p){
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

}

public static void display(ArrayPuzzle p){
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

}
}

Code
duplicated
because
IntPuzzle
and
ArrayPuzzle
are different

Observation

• Two display methods are needed because
IntPuzzle and ArrayPuzzle are different
types, and parameter p must be one or the other

• but the code inside the two methods is identical!
– code relies only on the assumption that the object p

has an instance method tile(int,int).

• Is there a way to avoid this code duplication?

One Solution ? Abstract Classes
abstract class Puzzle {

abstract int tile(int r, int c);
...

}
class IntPuzzle extends Puzzle {

public int tile(int r, int c) {...}
...

}
class ArrayPuzzle extends Puzzle {
public int tile(int r, int c) {...}
...

}

public static void display(Puzzle p){
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

}}

Puzzle
code

Client
code

Another Solution ? Interfaces
interface IPuzzle {

int tile(int r, int c);
...

}
class IntPuzzle implements IPuzzle {
public int tile(int r, int c) {...}
...

}
class ArrayPuzzle implements IPuzzle {

public int tile(int r, int c) {...}
...

}

public static void display(IPuzzle p){
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

}}

Puzzle
code

Client
code

• interface names can be used in type declarations
– IPuzzle p1, p2;

• a class that implements the interface is a subtype
of the interface type
– IntPuzzle and ArrayPuzzle are subtypes of
IPuzzle

– IPuzzle is a supertype of IntPuzzle and
ArrayPuzzle

IPuzzle

IntPuzzle ArrayPuzzle

• Unlike classes, types do not form a tree!
– a class may implement several interfaces
– an interface may be implemented by several classes

IPuzzle IPod IRon

AClass BClass

Interfaces

Classes

Interfaces vs Inheritance

• A class can
– implement many interfaces, but
– extend only one class

• To share code between two classes
– put shared code in a common superclass
– interfaces cannot contain code

Types

Static vs Dynamic Types

• Every variable (more generally, every
expression that denotes some kind of data)
has a static* or compile-time type
– derived from declarations – you can see it
– known at compile time, without running the program
– does not change

• Every object ever created has a dynamic or
runtime type
– obtained when the object is created using new
– not known at compile time – you can’t see it

* Warning! No relation to Java keyword static

Example
int i = 3, j = 4;
Integer x = new Integer(i+3*j-1);
System.out.println(x.toString());

• static type of the variables i,j and the expression
i+3*j-1 is int

• static type of the variable x and the expression
new Integer(i+3*j-1) is Integer

• static type of the expression x.toString() is
String (because toString() is declared in the
class Integer to have return type String)

• dynamic type of the object created by the execution
of new Integer(i+3*j-1) is Integer

Reference vs Primitive Types

• Reference types
– classes, interfaces, arrays
– E.g.: Integer

• Primitive types
– int, long, short, byte, boolean, char, float, double

x:

(Integer)
int value: 13
String toString()
...

13x:

Why Both int and Integer?

• Some data structures work only with reference
types (Hashtable, Vector, Stack,...)

• Primitive types are more efficient
for (int i = 0; i < n; i++) {...}

Upcasting and Downcasting
• Applies to reference types only
• Used to assign the value of an expression of one

(static) type to a variable of another (static) type
– upcasting: subtype → supertype
– downcasting: supertype → subtype

• A crucial invariant:

If during execution, an expression E is ever evaluated
and its value is an object O, then the dynamic type of
O is a subtype of the static type of E.

Upcasting
• Example of upcasting:

– static type of expression on rhs is Integer
– static type of variable x on lhs is Object
– Integer is a subtype of Object, so this is an upcast

• static type of expression on rhs must be a subtype of
static type of variable on lhs – compiler checks this

• upcasting is always type correct – preserves the
invariant automatically

Object x = new Integer(13);

Downcasting
• Example of downcasting:

– static type of y is Object (say)
– static type of x is Integer
– static type of expression (Integer)y is Integer
– Integer is a subtype of Object, so this is a downcast

• In any downcast, dynamic type of object must be a
subtype of static type of cast expression

• runtime check, ClassCastException if failure
• needed to maintain invariant (and only time it is needed)

Integer x = (Integer)y;

Is the Runtime Check Necessary?

void bar() {
foo(new Integer(13));

}

void foo(Object y) {
int z = ((Integer)y).intValue();
...

}

Yes, because dynamic type of object
may not be known at compile time

String("x")

Upcasting with Interfaces

• Java allows up-casting:
IPuzzle p1 = new ArrayPuzzle();
IPuzzle p2 = new IntPuzzle();

• Static types of right-hand side expressions
are ArrayPuzzle and IntPuzzle, resp.

• Static type of left-hand side variables is
IPuzzle

• Rhs static types are subtypes of lhs static
type, so this is ok

Why Upcasting?

• Subtyping and upcasting can be used to
avoid code duplication

• Puzzle example: you and client agree on
interface IPuzzle

interface IPuzzle{
void scramble();
int tile(int r, int c);
boolean move(char d);

}

Solution
interface IPuzzle {

int tile(int r, int c);
...

}
class IntPuzzle implements IPuzzle {
public int tile(int r, int c) {...}
...

}
class ArrayPuzzle implements IPuzzle {

public int tile(int r, int c) {...}
...

}

public static void display(IPuzzle p){
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

}}

Puzzle
code

Client
code

Method Dispatch

• Which tile method is invoked?
– depends on dynamic type of object p (IntPuzzle

or ArrayPuzzle)
– we don't know what it is, but whatever it is, we

know it has a tile method (since any class that
implements IPuzzle must have a tile method)

public static void display(IPuzzle p){
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

}}

Method Dispatch
public static void display(IPuzzle p){
for (int r = 0; r < 3; r++)
for (int c = 0; c < 3; c++)
System.out.println(p.tile(r,c));

}}

• Compile-time check: does the static type of p
(namely IPuzzle) have a tile method with
the right type signature? No → error

• Runtime: go to object that is the value of p,
find its dynamic type, look up its tile method

• The compile-time check guarantees that an
appropriate tile method exists

Note on Casting

• Up- and downcasting do not
change the object — they merely
allow it to be viewed at compile
time as a different static type

Another Use of Upcasting
Heterogeneous Data Structures

• Example:
IPuzzle[] pzls = new IPuzzle[9];
pzls[0] = new IntPuzzle();
pzls[1] = new ArrayPuzzle();

• names pzls[i] are of type IPuzzle
• objects created on right hand sides are of

subtypes of IPuzzle

Java instanceof

• Example:
if (p instanceof IntPuzzle) {...}

• true if dynamic type of p is a subtype of
IntPuzzle

• usually used to check if a downcast will
succeed

Example

void twist(IPuzzle[] pzls) {
for (int i = 0; i < pzls.length; i++) {
if (pzls[i] instanceof IntPuzzle) {
IntPuzzle p = (IntPuzzle)pzls[i];
p.twist();

}}}

• suppose twist is a method implemented
only in IntPuzzle

Avoid Useless Downcasting

void moveAll(IPuzzle[] pzls) {
for (int i = 0; i < pzls.length; i++) {
if (pzls[i] instanceof IntPuzzle)
((IntPuzzle)pzls[i]).move("N");

else ((ArrayPuzzle)pzls[i]).move("N");
}}

void moveAll(IPuzzle[] pzls) {
for (int i = 0; i < pzls.length; i++)
pzls[i].move("N");

}

bad

good

Subinterfaces

• Suppose you want to extend the
interface to include more methods
– IPuzzle: scramble, move, tile
– ImprovedPuzzle: scramble, move,
tile, SamLoyd

• Two approaches
– start from scratch and write an interface
– extend the IPuzzle interface

interface IPuzzle {
void scramble();
int tile(int r, int c);
boolean move(char d);

}

interface ImprovedPuzzle extends IPuzzle {
void SamLoyd();

}

•IPuzzle is a superinterface of ImprovedPuzzle
•ImprovedPuzzle is a subinterface of IPuzzle
•ImprovedPuzzle is a subtype of IPuzzle
• An interface can extend multiple superinterfaces
• A class that implements an interface must implement all

methods declared in all superinterfaces

D

E F

G
I

A

B
C

interface C extends A,B {...}
class F extends D implements A {...}
class E extends D implements A,B {...}

Interfaces Classes

Comparison

• Something that we do a lot
• Can compare all kinds of data with respect to

all kinds of comparison relations
– identity
– equality
– order
– lots of others

Identity vs Equality

• identity: == != (primitive and reference types)
• testing equality of objects: use equals
• equals is defined in class Object
• any class you create inherits equals from its

parent class, but you can override it (and
probably want to)

Identity vs Equality

• Quiz: What are the results of the
following tests?
– "hello".equals("hello")
– "hello" == "hello"
– new String("hello") == new String("hello")

true
true

false

Order

• numeric primitives: use <, >, <=, >=
• objects?

– Integer – compare by value
– String – compare lexicographically

(dictionary order)
– cannot use <, >, <=, >=

Order

• for reference types, use Comparable interface

• (note: this is Java 1.4.2 – Java 5.0 has generics)
•x.compareTo(y) returns a negative, zero, or positive

integer according as x is "less than", "equal to", or
"greater than" y, respectively

• "less than", "equal to", and "greater than" are defined
for that class by the implementation of compareTo

interface Comparable {
int compareTo(Object x);

}

Example
• Compare people by weight:

class Person implements Comparable {
private int weight;
...
public int compareTo(Object obj) {
return ((Person)obj).weight - weight;

}
public boolean equals(Object obj) {
return obj instanceof Person &&
((Person)obj).weight == weight;

}
}

Note

If a class has an equals method and
also implements Comparable, then it is
advisable (but not enforced) that

a.equals(b)
exactly when

a.compareTo(b) == 0.

Generic Code
• The Comparable interface allows generic

code for sorting, searching, and other
operations that only require comparisons

• The sort methods do not need to know what
they are sorting, only how to compare
elements

static void mergeSort(Comparable[] a) {...}
static void bubbleSort(Comparable[] a) {...}

Generic Code
• Finding the max element of an array

• What is the max element? Whatever
compareTo says it is!

//return max element of an array
static Comparable max(Comparable[] a) {

//throws ArrayIndexOutOfBoundsException
Comparable max = a[0];
for (Comparable x : a) {
if (x.compareTo(max) > 0) max = x;

}
return max;

}

Another Example
• Lexicographic comparison of Comparable arrays
• for int arrays, a < b lexicographically iff either:

– a[i] == b[i] for i < j and a[j] < b[j]; or
– a[i] == b[i] for all i < a.length, and b is longer

//compare two Comparable arrays lexicographically
static int arrayCompare(Comparable[] a, Comparable[] b) {
for (int i = 0; i < a.length && i < b.length; i++) {
int x = a[i].compareTo(b[i]);
if (x != 0) return x;

}
return b.length - a.length;

}

Conclusion

• Interfaces have two main uses

– software engineering: good fences make good neighbors

– subtyping

• Subtyping is a central idea in programming languages

– inheritance and interfaces are two methods for creating

subtype relationships

• Comparable is a useful standard interface that will

make your life easier

