CS211
Computersand Programming

L ecture 7: Interfaces, Subtypes, and Comparable

Announcements

Assignment 2 is finally up. Look through it before
tomorrow, so you can ask questions.

Quiz tomorrow on OOP, Inheritance, and Interfaces.
Assignment 1 will be graded soon.

Prelim 1 on first two weeks of material, in class on
Tuesday.

Assignment 2 is due Wednesday, but it's a good idea
to complete it before the exam.

Interfaces

e SO far, we have talked about interfaces
Informally, in the English sense of the word

— an Interface describes how a client interacts with a
class

— method names, argument/return types, fields

e Java has a construct called 1 nt erf ace
which can be used formally for this purpose

Javal nterf ace

I nterface | Puzzle {
voi d scranbl e();
Iint tile(int r, int c);
bool ean nove(char d);

}

class IntPuzzle inplenmnents | Puzzle {

public void scranble() {

.
public int tile(int r, int c) {
.
publ i ¢ bool ean nove(char d) {
}

e name of interface:
| Puzzl e

* a class implements
this interface by
Implementing
public instance
methods as
specified in the
Interface

 the class may

Implement other
methods

Notes

 An Interface I1s not a class!
— cannot be instantiated

— Incomplete specification

e class header must assert i npl enent s | for Java
to recognize that the class implements interface |

* A class may implement several interfaces:
class X implenents | Puzzle, |Pod {

}

Why an | nt er f ace construct?

e good software engineering

— specify and enforce boundaries between
different parts of a team project

e can use Interface as a type
— allows more generic code
— reduces code duplication

Example of code duplication

e Suppose we have two implementations of
puzzles:
— class | nt Puzzl e uses an i nt to hold state
— class ArrayPuzzl e uses an array to hold state

e Assume client wants to use both
Implementations

— perhaps for benchmarking both implementations
to pick the best one

— client code has a display method to print out
puzzles

 What would the display method look like?

Class dient{
| nt Puzzl e pl = new I ntPuzzle();
ArrayPuzzle p2 = new ArrayPuzzl e();

...display(pl)...display(p2)...

public static void display(lntPuzzle p){
for (int r =0; r < 3; r++)
for (int ¢ =0; ¢ < 3; c++)
Systemout.printin(p.tile(r,c));
}

public static void display(ArrayPuzzle p){
for (int r =0; r < 3; r++)
for (int ¢ =0; ¢ < 3; c++)
Systemout.printlin(p.tile(r,c));

Code
duplicated

because
| nt Puzzl e

and
ArrayPuzzl e

are different

Observation

 Two display methods are needed because
| nt Puzzl e and ArrayPuzzl e are different

types, and parameter p must be one or the other

e but the code Inside the two methods is identical!

— code relies only on the assumption that the object p
has an instance method tile(int,int).

* |s there a way to avoid this code duplication?

One Solution ? Abstract Classes

abstract class Puzzle {
abstract int tile(int r, int c);

}

cl ass IntPuzzle extends Puzzle {
Puzzle | public int tile(int r, int c) {...}
code

}

cl ass ArrayPuzzl e extends Puzzle {
public int tile(int r, int c) {...}

}

public static void display(Puzzle p){
Client for (int r =0; r < 3; r++)
for (int ¢ =0; ¢ < 3; c++)

code Systemout.printlin(p.tile(r,c));

1}

Another Solution ? Interfaces

I nterface | Puzzle {
int tile(int r, int c);

}

class IntPuzzle inplenents | Puzzle {
Puzzle | public int tile(int r, int c) {...}
code

}

cl ass ArrayPuzzle inplenmnents | Puzzle {
public int tile(int r, int c) {...}

}

public static void display(lPuzzle p){
Client for (int r =0; r < 3; r++)
for (int ¢ =0; ¢ < 3; c++)

code . .
Systemout.printin(p.tile(r,c));

1}

ArrayPuzzl e

 Interface names can be used In type declarations
—1Puzzle pl, p2;

e a class that implements the interface Is a subtype
of the interface type

— I nt Puzzl e and ArrayPuzzl e are subtypes of
| Puzzl e

— | Puzzl e is a supertype of | nt Puzzl e and
ArrayPuzzl e

Interfaces @
Classes @ .
« Unlike classes, types do not form a tree!

— a class may implement several interfaces
— an interface may be implemented by several classes

Interfaces vs Inheritance

e A class can
— implement many interfaces, but
— extend only one class

e To share code between two classes
— put shared code in a common superclass
— Interfaces cannot contain code

Types

Static vs Dynamic Types

 Every variable (more generally, every
expression that denotes some kind of data)
has a static* or compile-time type
— derived from declarations — you can see it
— known at compile time, without running the program
— does not change

e Every object ever created has a dynamic or
runtime type
— obtained when the object Is created using new

— not known at compile time — you can’t see it

*Warning! No relation to Java keyword st ati c

Example

int i =3,] =4
| nteger x = new Integer(i+3*j-1);
Systemout.println(x.toString());

e static type of the variables i ,] and the expression
| +3*] -1isi nt

o static type of the variable x and the expression
new | nteger (1 +3*)-1) isl nteger

o static type of the expression x. t oStri ng() Is
String (becauset oString() Isdeclared in the
class | nt eger to have return type St ri ng)

* dynamic type of the object created by the execution
of new I nteger (i1 +3*]-1) isl nt eger

Reference vs Primitive Types

X. o
. Reference types \
— classes, interfaces, arrays

(I nt eger)

— E.g.: I nteger int val ue: 13
String toString()

e Primitive types
— Int, long, short, byte, boolean, char, float, double
X: 13

Why Both I nt and | nt eger ?

e Some data structures work only with reference
types (Hasht abl e, Vector, Stack,...)

* Primitive types are more efficient
for (int 1 =0;, 1 <n; 1++) {...}

Upcasting and Downcasting

* Applies to reference types only

e Used to assign the value of an expression of one
(static) type to a variable of another (static) type
— upcasting: subtype ® supertype
— downcasting: supertype ® subtype

e A crucial invariant:

If during execution, an expression E Is ever evaluated

and its value is an object O, then the dynamic type of
O Is a subtype of the static type of E.

Upcasting

Example of upcasting:

hj ect x = new I nteger(13);

— static type of expression on rhsis | nt eger
— static type of variable x on Ihs is (bj ect
— | nt eger is a subtype of Obj ect, so this is an upcast

static type of expression on rhs must be a subtype of
static type of variable on Ihs — compiler checks this

upcasting is always type correct — preserves the
Invariant automatically

Downcasting

Example of downcasting:

| nteger x = (I nteger)y;

— static type of y is Cbj ect (say)

— static type of x iIs | nt eger

— static type of expression (| nt eger)y is | nt eger

— | nt eger is a subtype of Cbj ect , so this is a downcast

In any downcast, dynamic type of object must be a
subtype of static type of cast expression

runtime check, Cl assCast Except i on if failure
needed to maintain invariant (and only time it is needed)

Is the Runtime Check Necessary?

Yes, because dynamic type of object
may not be known at compile time

voi d bar() {
f oo(new +rteger{i3)) ;
} String("x")

voi d foo(Qoject y) {
Iint z = ((Integer)y).intValue();

Upcasting with Interfaces

Java allows up-casting:
| Puzzl e pl = new ArrayPuzzl e();
| Puzzl e p2 new | ntPuzzl e();

Static types of right-hand side expressions
are ArrayPuzzl e and | nt Puzzl e, resp.

Static type of left-hand side variables Is
| Puzzl e

Rhs static types are subtypes of Ihs static
type, so this is ok

Why Upcasting?

e Subtyping and upcasting can be used to
avolid code duplication

 Puzzle example: you and client agree on
Interface | Puzzl e

I nterface | Puzzl ef
voi d scranbl e();
Int tile(int r, int c);
bool ean nove(char d);

}

Puzzle
code

Client
code

Solution

I nterface | Puzzle {
int tile(int r, int c);

}
class IntPuzzle inplenents | Puzzle {
public int tile(int r, int c¢c) {...}
}
cl ass ArrayPuzzle inplenents | Puzzle {
public int tile(int r, int c) {...}
}
public static void display(lPuzzle p){
for (int r =0; r < 3; r++)
for (int ¢ =0; ¢ < 3; c+4+)

Systemout.printin(p.tile(r,c));
3

Method Dispatch

public static void display(lPuzzle p){
for (int r =0; r < 3; r++)
for (int ¢ =0; c < 3; Cc++)
Systemout.println(p.tile(r,c));

1}

e Whichti | e method is invoked?

— depends on dynamic type of object p (I nt Puzzl e
or ArrayPuzzl e)

— we don't know what it is, but whatever it is, we
know it has ati | e method (since any class that

Implements | Puzzl e must have ati | e method)

Method Dispatch

1}

public static void display(lPuzzle p){
for (int r = 0; r < 3; r++)

for (int ¢ =0; c < 3; Cc++)
Systemout.println(p.tile(r,c));

« Compi
(name
the rig

e-time check: does the static type of p
y | Puzzl e) have ati | e method with

Nt type signature? No ® error

e Runtime: go to object that is the value of p,
find its dynamic type, look up itst i | e method

 The compile-time check guarantees that an
appropriate t 1 | e method exists

Note on Casting

e Up- and downcasting do not
change the object — they merely
allow It to be viewed at compile
time as a different static type

Another Use of Upcasting

Heterogeneous Data Structures

e Example:
Puzzl e[] pzls = new | Puzzl e[9];

0zl s[0] = new I nt Puzzl e(),;
0zl s[1] = new ArrayPuzzl e();
e names pzl s[1] are oftype | Puzzl e

* oObjects created on right hand sides are of
subtypes of | Puzzl e

Java |l nst anceof

 Example:
I f (p 1 nstanceof |ntPuzzle) {...}

 true If dynamic type of p Is a subtype of
| nt Puzzl e

e usually used to check if a downcast will
succeed

Example

e SUppose t W st Is a method implemented
onlyinl nt Puzzl e

void tw st (lPuzzle[] pzls) {
for (int 1 =0; | < pzls.length; 1++) {
| f (pzls[i] 1 nstanceof IntPuzzle) {
I nt Puzzle p = (IntPuzzle)pzls[i];
pP.tw st();
38

Avoid Useless Downcasting

voi d noveAl |l (1 Puzzle[] pzls) {
for (int 1 =0; I < pzls.length; I++) {
I f (pzls[i] instanceof |ntPuzzle)
bad ((IntPuzzle)pzls[i]).nmve("N'");
el se ((ArrayPuzzle)pzls[i]).nove("N');

1}

voi d noveAl |l (1 Puzzle[] pzls) {

gOOd for (int i =0; i < pzls.length; i++)

pzls[i].nmove("N');

Subinterfaces

e Suppose you want to extend the
Interface to include more methods

— 1 Puzzl e:scranbl e, nove, tile
— | nprovedPuzzl e: scranbl e, nove,
tile, SanlLoyd
e Two approaches

— start from scratch and write an interface
— extend the | Puzzl e interface

I nterface | Puzzle {
voi d scranbl e();
int tile(int r, int c);
bool ean nove(char d);

}

| nterface | nprovedPuzzl e extends | Puzzle {
voi d Samloyd();

}

| Puzzl e is a superinterface of | npr ovedPuzzl e
| npr ovedPuzzl| e is a subinterface of | Puzzl e
| npr ovedPuzzl e is a subtype of | Puzzl e

An interface can extend multiple superinterfaces

A class that implements an interface must implement all
methods declared in all superinterfaces

Interfaces Classes

Interface C extends A B {...}
class F extends D inplenments A{...}
class E extends D inplenments A B {...}

Comparison

 Something that we do a lot

e Can compare all kinds of data with respect to
all kinds of comparison relations
— identity
— equality
— order
— lots of others

ldentity vs Equality

identity: == I= (primitive and reference types)
testing equallty of objects: use equal s
equal s Is defined in class Obj ect

any class you create inherits equal s from its

parent class, but you can override it (and
probably want to)

ldentity vs Equality

e Quiz: What are the results of the

following tests?

— "hello".equals("hello") true

— "hello” =="hello" true

— new String("hello") == new String("hello") f al se

Order

e NUMeric primitives: use <, >, <=, >=
* Objects?
— | nt eger — compare by value

— St ri ng — compare lexicographically
(dictionary order)

— cannot use <, >, <=, >=

Order

« for reference types, use Conpar abl e interface

| nt erface Conparabl e {
| nt conpareTo(Obj ect X);

}

 (note: this is Java 1.4.2 — Java 5.0 has generics)
e X. conpareTo(y) returns a negative, zero, or positive

Integer according as x is "less than", "equal to", or
"greater than" y, respectively

 "less than", "equal to", and "greater than" are defined
for that class by the implementation of conpar eTo

Example

« Compare people by weight:

cl ass Person i npl enents Conparabl e {
private int weight;

public i1 nt conpareTo((Object obj) {
return ((Person)obj).weight - weight;
}
publ i c bool ean equal s((Object obj) {
return obj instanceof Person &&
((Person)obj).wei ght == wei ght;

Note

If a class has an equal s method and
also implements Conpar abl e, then it is

advisable (but not enforced) that
a. equal s(b)

exactly when
a.conpareTo(b) ==

Generic Code

 The Conpar abl e interface allows generic

code for sorting, searching, and other
operations that only require comparisons

static void nergeSort(Conparable[] a) {...}
static void bubbl eSort (Conparable[] a) {...}

* The sort methods do not need to know what
they are sorting, only how to compare
elements

Generic Code

* Finding the max element of an array

[/return max el enent of an array
static Conparabl e max(Conparable[] a) {
[/throws Arrayl ndexQut O BoundsExcepti on
Conpar abl e nmax = a[0] ;
for (Conparable x : a) {
| f (x.conpareTo(nmax) > 0) nmax = X;
}

return max;

}

e What is the max element? Whatever
conpar eTo says it is!

Another Example

 Lexicographic comparison of Conpar abl e arrays

o fori nt arrays, a < b lexicographically iff either:
—a[i] == Db[i] fori < janda[]] < b[]];or
—a[i] == Db[i] foralli < a.length, andb is longer

/| conpare two Conparabl e arrays | exi cographically
static int arrayConpare(Conparable[] a, Conparable[] b) {

for (int i =0; i <a.length & i < b.length; i++) {
int x = a[i].conpareTo(b[i]);
If (x '=0) return x;

}

return b.length - a.length;

}

Conclusion

Interfaces have two main uses

— software engineering: good fences make good neighbors

— subtyping

Subtyping is a central idea in programming languages

— Inheritance and interfaces are two methods for creating
subtype relationships

Conpar abl e is a useful standard interface that will
make your life easier

