CS211
Computersand Programming

L ecture 6: Inheritance
Summer 2005

What Is Inheritance?

OO-programming = Encapsulation + Extensibility

Encapsulation: permits code to be used without knowing
Implementation details

Extensibility: permits behavior of classes to be changed or
extended without having to rewrite the code of the class
— no need to involve the class implementer

Mechanism for extensibility in OO-programming:
Inheritance

Inheritance promotes code reuse

Running Example: Puzzle

class Puzzle {

//representation of a puzzle state
private int state;

[/ create a new random | nst ance
public void scranble() {...}

//say which tile occupies a given position
public int tile(int r, int c) {...}

//nmove a tile
publ i c bool ean nove(char c) {...}

New Requirement

Suppose you are the client. After receiving
puzzle code, you decide you want the code to
keep track of the number of moves made since
the last scramble operation.

Implementation is simple:
— Keep a counter numMoves, initialized to O
— move method increments counter
— scramble method resets counter to O

— New method printNumMoves for printing value of
counter

Implementation

 Three approaches:

— Call supplier, apologize profusely, and send them
a new specification. They implement it and charge
you an extra $5K. ®

— Rewrite the supplier’s code yourself. Three
months later, you still haven't figured it out. ®

— Use inheritance to define a new class that
extends the behavior of the supplier’s class. ©

Goal

e define a new class EPuzzle that extends
the class Puzzle

e tell Java that EPuzzle is just like Puzzle,
except:

— It has a new integer instance variable named
numMoves

— It has a new instance method called
printNumMoves

— It has modified versions of scramble and move
methods

state
scramble()
tile()
move()

Picture

Puzzle

/

state
scramble()
tile()
move()
numMoves

printNumMoves()

EPuzzle

cl ass EPuzzl e extends Puzzle {
private int numvbves = O;
public void scranble() {...}
publ i ¢ bool ean nove(char d) {...}
public void printNumvbves() {...}

e Class EPuzzle is a subclass of class Puzzle
* Class Puzzle is a superclass of class EPuzzle

 An EPuzzle object has

— Its own Instance variable numMoves and instance method
printNumMoves

— it overrides methods scramble and move in class Puzzle
— it inherits method tile from class Puzzle

Overriding

A method declaration m in subclass B
overrides a method m in superclass A if
both methods have
— the same name,

— both are class methods or both are
Instance methods, and

— both have the same number and type of
parameters and same return type.

Class Hierarchy

Superclass of EPuzzle
Direct superclass @
(parent) of EPuzzle N\ UZ2Z€/ wereee
Subclass of Puzzle @

Every class (except Object) has a unique direct
superclass, called the parent class of that class.

Single Inheritance

Every class Is implicitly a subclass of Object

A class can extend exactly one other class

— class Puzzle {...}
* This class implicitly extends Object

— class EPuzzle extends Puzzle {...}

» This class explicitly extends Puzzle, and implicitly
extends Object since Puzzle is a subclass of Object

Class hierarchy in Java Is a tree

In C++, a class can have more than one
superclass (multiple inheritance)

— Class hierarchy is a directed acyclic graph

Writing EPuzzle Class

cl ass EPuzzl e extends Puzzle {
private int nunmvbves = O;

public void printNumvbves() ({

System out . printl n("Nunber of noves ="

+ numVbves) ;

}

[/ other nethod definitions

scramble and move

How should we write these methods?
One option: write them from scratch.

Cl ass EPuzzl e extends Puzzle {
private int numvbves = O;

public void scramble() {
state = "97/8654321";
numvbves = O;

}

* Problem: state was declared to be a private variable in class
Puzzle, so it is not accessible to methods in class EPuzzle

Difficulty with Private Variables

Variable state Is declared private, so it is only
accessible to instance methods In class
Puzzle

In an instance of class EPuzzle, the tile
method can access this variable because it Is
Inherited from the superclass

Scramble method defined in class Epuzzle
does not have access to state

Similarly, private methods in superclass are
not accessible to methods In subclass

Interesting Point

EPuzzle

state /. N\

scramble()
tile()
move()
numMoves

printNumMoves() _)

EPuzzle objects have an instance variable for state
because EPuzzle extends Puzzle

However, state is accessible only to methods
Inherited from Puzzle (such as tile()) and not to
methods written in EPuzzle class (such as
scramble()) because state was declared to be private

Protected Access

New access specifier: protected

A protected instance variable in class S can be
accessed by instance methods defined either in class
S or in a subclass of S

A protected method in class S can be invoked from
an instance method defined either in class S or in a
subclass of S.

Access checks are done by compiler at compile time:

— For an invocation r.m():
» Determine type of reference r

» Does the corresponding class/interface have a method named
m with appropriate arguments?

» Are the access specifiers of that method appropriate?

Proper Code for Puzzle Class

says state Is
accessible from
cl ass Puzzle { subclasses

protected int state;
public void scranble(){...}

Code for EPuzzle

cl ass EPuzzle extends Puzzle {
protected i nt numvbves = O;

public void printNumvbves() {
System out. printl n("Nunber of noves =
+ nunm\bves) ;

}
public void scranble() {

state = "978654321": //OK since state I1s 1 nherited
numvbves = O;
}

[/siml|ar code for nove

Protected Access

Should all instance variables and methods be
declared protected?

Need to think about extensibility: if you
believe that subclasses will want access to a
member, it should be declared protected

Analogy:

— Which components of a car might a user want to
upgrade?

— What wires/sub-systems need to be exposed to
make the upgrade easy”?

Extending a class requires more knowledge
of the class than is needed just to use it

Another Solution

Suppose subclass S overrides a method m In
Its superclass.

Methods In subclass S can invoke overridden
method of superclass as

super.m()

Caveats:

— cannot compose super many times as in
super.super.m()

— static binding: super.m is resolved at compile-time,
S0 no object look-up at runtime

Another Definition of EPuzzle

cl ass EPuzzl e extends Puzzle {
protected i nt numvbves = O;

public void scranble() {
super . scranbl e();
numvbves = O;

}

publ i ¢ bool ean nove(char d){
bool ean p = super. nove(d);
1 f (p) nunmvbves++; //legal nove?
return p;

}

Do not need protected access to state!

Subtypes

* Inheritance gives a mechanism in Java for
creating subtypes
— another other mechanism: interfaces

* |f class B extends class A, B Is a subtype of A

 Examples:
— Puzzle p = new EPuzzle(); //up-casting
— EPuzzle e = (EPuzzle)p; //down-casting

Unexpected Consequence

A method that overrides a superclass method cannot
have more restricted access than the superclass method

class A {

public int n() {...}
}

class B extends A {
private int m() {...} //illegal!

}

A supR = new B(); //upcasting
supR m(); //will invoke private nmethod in
class B at runti ne!

Shadowing Variables

« Like overriding, but for fields instead of methods
— Superclass: variable v of some type
— Subclass: variable v perhaps of some other type
— Method in subclass can access shadowed variable by using
super.v

e Variable references are resolved using static binding,
not dynamic binding
— Variable reference r.v: static type of the variable r, not runtime
type of the object referred to by r, determines which variable is
accessed
« Shadowing variables is bad medicine and should be
avoided

Constructors

No overriding of constructors: each class has
ItS own constructor

Superclass constructor can be invoked
explicitly by subclass constructor by invoking
super() with parameters as needed

Can invoke other constructors of the same
class using this()

Call to super() or this() must occur first in the
constructor

Abstract Classes

e An abstract class cannot be instantiated

 May have methods without bodies that must be
overridden by a (non-abstract) subclass

abstract class Puzzle {
protected int state;

public void scranble() {
state = 978654321,

}

/[abstract net hods (no code)
abstract public int tile(int r, int c);
abstract public void nove(char d);

Abstract Classes

* An abstract class is an incomplete
specification
— cannot be instantiated directly

— not all methods in abstract class need to
be abstract ? allows code sharing

— abstract classes are part of the class
hierarchy and the usual subtyping rules

apply

Use of Abstract Classes

abstract class Dad
S b o>

e Variables/methods common to a bunch of
related subclasses can be declared once In
Dad and inherited by all subclasses

 |f subclass C wants to do something

differently, it can override Dad’s methods as
needed

Conclusion

o Key features of OO-programming

— Encapsulation: classes and access control

— Inheritance: extending or changing the
behavior of classes without rewriting them
from scratch

— Dynamic storage allocation & garbage
collection

— Access control: public/private/protected
— Subtyping

