
CS 211

Computers and Programming
http://www.cs.cornell.edu/courses/cs211/2005su

Lecture 6: Inheritance
Summer 2005

What is Inheritance?

• OO-programming = Encapsulation + Extensibility

• Encapsulation: permits code to be used without knowing
implementation details

• Extensibility: permits behavior of classes to be changed or
extended without having to rewrite the code of the class
– no need to involve the class implementer

• Mechanism for extensibility in OO-programming:
inheritance

• Inheritance promotes code reuse

Running Example: Puzzle

class Puzzle {

//representation of a puzzle state
private int state;

//create a new random instance
public void scramble() {...}

//say which tile occupies a given position
public int tile(int r, int c) {...}

//move a tile
public boolean move(char c) {...}

}

New Requirement
Suppose you are the client. After receiving
puzzle code, you decide you want the code to
keep track of the number of moves made since
the last scramble operation.

Implementation is simple:
– Keep a counter numMoves, initialized to 0
– move method increments counter
– scramble method resets counter to 0
– New method printNumMoves for printing value of

counter

Implementation

• Three approaches:
– Call supplier, apologize profusely, and send them

a new specification. They implement it and charge
you an extra $5K. L

– Rewrite the supplier’s code yourself. Three
months later, you still haven’t figured it out. L

– Use inheritance to define a new class that
extends the behavior of the supplier’s class. ☺

Goal

• define a new class EPuzzle that extends
the class Puzzle

• tell Java that EPuzzle is just like Puzzle,
except:
– it has a new integer instance variable named

numMoves
– it has a new instance method called

printNumMoves
– it has modified versions of scramble and move

methods

Picture

state
scramble()

tile()
move()

Puzzle EPuzzle
state

scramble()
tile()

move()
numMoves

printNumMoves()

class EPuzzle extends Puzzle {
private int numMoves = 0;
public void scramble() {...}
public boolean move(char d) {...}
public void printNumMoves() {...}

}

• Class EPuzzle is a subclass of class Puzzle
• Class Puzzle is a superclass of class EPuzzle
• An EPuzzle object has

– its own instance variable numMoves and instance method
printNumMoves

– it overrides methods scramble and move in class Puzzle
– it inherits method tile from class Puzzle

Overriding

• A method declaration m in subclass B
overrides a method m in superclass A if
both methods have
– the same name,
– both are class methods or both are

instance methods, and
– both have the same number and type of

parameters and same return type.

Class Hierarchy

Object

Puzzle Array

EPuzzleSubclass of Puzzle

Superclass of EPuzzle

Direct superclass
(parent) of EPuzzle

Every class (except Object) has a unique direct
superclass, called the parent class of that class.

…….

Single Inheritance

• Every class is implicitly a subclass of Object
• A class can extend exactly one other class

– class Puzzle {…}
• This class implicitly extends Object

– class EPuzzle extends Puzzle {…}
• This class explicitly extends Puzzle, and implicitly

extends Object since Puzzle is a subclass of Object

• Class hierarchy in Java is a tree
• In C++, a class can have more than one

superclass (multiple inheritance)
– Class hierarchy is a directed acyclic graph

Writing EPuzzle Class

class EPuzzle extends Puzzle {
private int numMoves = 0;

public void printNumMoves() {
System.out.println("Number of moves = "
+ numMoves);

}

//other method definitions
...

}

scramble and move

• Problem: state was declared to be a private variable in class
Puzzle, so it is not accessible to methods in class EPuzzle

How should we write these methods?
One option: write them from scratch.

Class EPuzzle extends Puzzle {
private int numMoves = 0;

public void scramble() {
state = "978654321";
numMoves = 0;

}
}

Difficulty with Private Variables

• Variable state is declared private, so it is only
accessible to instance methods in class
Puzzle

• In an instance of class EPuzzle, the tile
method can access this variable because it is
inherited from the superclass

• Scramble method defined in class Epuzzle
does not have access to state

• Similarly, private methods in superclass are
not accessible to methods in subclass

Interesting Point

• EPuzzle objects have an instance variable for state
because EPuzzle extends Puzzle

• However, state is accessible only to methods
inherited from Puzzle (such as tile()) and not to
methods written in EPuzzle class (such as
scramble()) because state was declared to be private

EPuzzle
state

scramble()
tile()

move()
numMoves

printNumMoves()

Protected Access

• New access specifier: protected
• A protected instance variable in class S can be

accessed by instance methods defined either in class
S or in a subclass of S

• A protected method in class S can be invoked from
an instance method defined either in class S or in a
subclass of S.

• Access checks are done by compiler at compile time:
– For an invocation r.m():

• Determine type of reference r
• Does the corresponding class/interface have a method named

m with appropriate arguments?
• Are the access specifiers of that method appropriate?

Proper Code for Puzzle Class

class Puzzle {
protected int state;
public void scramble(){...}
...

}

says state is
accessible from
subclasses

Code for EPuzzle

class EPuzzle extends Puzzle {
protected int numMoves = 0;

public void printNumMoves(){
System.out.println("Number of moves = "
+ numMoves);

}
public void scramble() {

state = "978654321"; //OK since state is inherited
numMoves = 0;

}
//similar code for move

}

Protected Access
• Should all instance variables and methods be

declared protected?
• Need to think about extensibility: if you

believe that subclasses will want access to a
member, it should be declared protected

• Analogy:
– Which components of a car might a user want to

upgrade?
– What wires/sub-systems need to be exposed to

make the upgrade easy?
• Extending a class requires more knowledge

of the class than is needed just to use it

Another Solution

• Suppose subclass S overrides a method m in
its superclass.

• Methods in subclass S can invoke overridden
method of superclass as

super.m()
• Caveats:

– cannot compose super many times as in
super.super.m()

– static binding: super.m is resolved at compile-time,
so no object look-up at runtime

Another Definition of EPuzzle
class EPuzzle extends Puzzle {

protected int numMoves = 0;
...
public void scramble() {

super.scramble();
numMoves = 0;

}
public boolean move(char d){

boolean p = super.move(d);
if (p) numMoves++; //legal move?
return p;

}
}

Do not need protected access to state!

Subtypes

• Inheritance gives a mechanism in Java for
creating subtypes
– another other mechanism: interfaces

• If class B extends class A, B is a subtype of A
• Examples:

– Puzzle p = new EPuzzle(); //up-casting
– EPuzzle e = (EPuzzle)p; //down-casting

Unexpected Consequence
A method that overrides a superclass method cannot
have more restricted access than the superclass method

class A {
public int m() {...}

}

class B extends A {
private int m() {...} //illegal!

}

A supR = new B(); //upcasting
supR.m(); //will invoke private method in
class B at runtime!

Shadowing Variables
• Like overriding, but for fields instead of methods

– Superclass: variable v of some type
– Subclass: variable v perhaps of some other type
– Method in subclass can access shadowed variable by using

super.v

• Variable references are resolved using static binding,
not dynamic binding
– Variable reference r.v: static type of the variable r, not runtime

type of the object referred to by r, determines which variable is
accessed

• Shadowing variables is bad medicine and should be
avoided

Constructors

• No overriding of constructors: each class has
its own constructor

• Superclass constructor can be invoked
explicitly by subclass constructor by invoking
super() with parameters as needed

• Can invoke other constructors of the same
class using this()

• Call to super() or this() must occur first in the
constructor

Abstract Classes

• An abstract class cannot be instantiated
• May have methods without bodies that must be

overridden by a (non-abstract) subclass

abstract class Puzzle {
protected int state;
public void scramble() {

state = 978654321;
}

//abstract methods (no code)
abstract public int tile(int r, int c);
abstract public void move(char d);

}

Abstract Classes

• An abstract class is an incomplete
specification
– cannot be instantiated directly
– not all methods in abstract class need to

be abstract ? allows code sharing
– abstract classes are part of the class

hierarchy and the usual subtyping rules
apply

Use of Abstract Classes

• Variables/methods common to a bunch of
related subclasses can be declared once in
Dad and inherited by all subclasses

• If subclass C wants to do something
differently, it can override Dad’s methods as
needed

A B C

abstract class Dad

Conclusion

• Key features of OO-programming
– Encapsulation: classes and access control
– Inheritance: extending or changing the

behavior of classes without rewriting them
from scratch

– Dynamic storage allocation & garbage
collection

– Access control: public/private/protected
– Subtyping

