CS211

Computersand Programming
http://www.cs.cor nell.edu/cour ses/cs211/2005su

L ecture 5: Object-Oriented Programming
Summer 2005

Announcements

Assignment 1 is due right now.

Assignment 2 will be up by tomorrow morning. It will be

somewhat shorter than the last assignment, as you also
have...

Prelim 1 — Next Tuesday in class. Covers material from
weeks 1&2: Basic Java, Induction, Recursion, Parsing,
OOP, Inheritance, and Interfaces

Reading: Read Chapter 3 again, this time in depth.

Object-Oriented Programming

 \What do we mean by object-oriented?
 Why use It?

— modularity (implementation hiding)

— code reuse

— type safety
— Inheritance (next time)

* Implementation

— heap allocation of objects
— references to objects

Some Context

Programming “in the large”
— big applications require many programmers

General approach
— break problem into smaller subproblems
— assign responsibility for each subproblem to somebody
— keep the interfaces small!

Each subproblem must have a specification

— Functionality: What services must code provide?

— Interface: What input conditions does the code expect? What
output conditions does it guarantee?

Job of the programmer: provide an implementation
(code) that meets the specification

The Message

« Separate the specification from the
Implementation
— called data abstraction in the literature
— more modular, easier to maintain

— Implementation is hidden from the client, can be
changed without changing the interface

— the client’s code does not break
* Object-oriented languages

— encourage data abstraction
— more modular code

The 8-Puzzle

2

3}

5

2
S

Program Organization

e cl ass Puzzl e

— an implementation of the game, written by you
— functionality: L1213

4156
* init - put puzzle in the initial state [7]s
e move - move atile N, S, E, or W to get a new state
e tile - report which tile is in a given position

e cl ass TestPuzzle

— a client class, written by someone else

— will communicate with Puzzl| e (your code) to
play the game

Implementation

WO subtasks

— How do we represent a state (puzzle
configuration)?

— Given the representation, how do we
implementinit, nove,andtil e?

Suppose no objects...

Representation of State

916 — » 123496758

* Model puzzle state as an integer between 123456789 and 987654321
— 9 represents the empty square
e To convert integer s into a grid representation:

— Remainder when s is divided by 10: tile in bottom right position
» Java expression: s %10

— Quotient after dividing by 10 gives encoding of remaining tiles
» Java expression: s/ 10

— Repeat remainder/quotient operations to extract remaining tiles
* This encoding may seem strange, but it arises many places in CS
— Storing multidimensional arrays in memory

Implementing Operations

e | nit: putinto initial configuration
s = 123456879;
11l e:whattileis in position (row, col) ?

return s/ ((1nt)Mth. pow 10, 8-
(3*row+col))) %0,

e move: left to the reader

A Key Question

 Where do we keep the state?

1. method parameter/local variable
- client keeps track of it
- passed to Puzzle methods on each call
- allocated on stack

2.class variable of Puzzl e class

- client does not see it
- allocated In static area

* These implementation choices affect the
Interface of the Puzzl e class

Interface L(ocal)

(1) state in
Test Puzzl e Puzzl e
<
t

(2) state ou

o State is implemented as local variable in class
Test Puzzl e

— passed to/returned from methods in Puzzl e class
 Interface of Puzzl e class:

[/return encoding of initial state

int 1nit();

[/return nunber of tile at grid (r,c)

int tile(int s, int r, int c);

//nmove to a new state, return new encodi ng
I nt nove(int s, char d);

Implementation using L

cl ass TestPuzzle {

public static void main(String[] args) {
int s = Puzzle.init();
di spl ay(state);
state = Puzzle.nove(state,' N);

}

public static void display(int s) {

for (int r =0; r < 3; r++) {
for (int ¢ =0; ¢ < 3; c++)
Systemout . print(Puzzle.tile(state,r,c)
+ ? 7?);
Systemout.printlin(); //newine after row

}
}
}

class Puzzle {
public static int init() {
return 123456879,

}

public static int tile(int s, int r, int c) {
return s/ ((int)Math. pow 10, 8-(3*r+c))) %0;
}

public static int nove(int s, char

d) {

}
}

Critique of Interface L

 No data abstraction!
— Puzzl e class implementer chose to
Implement state as an i nt

— This representation is exposed in the
Interface, so the client code is aware of it
— Client’s code may depend on this encoding

—If Puzzl e class implementer decides to

change the implementatation (say, to
represent state as a |l ong), client code breaks

Interface S(tatic)

Static area

Puzzl e. state |i nt:

Test Puzzl e Puzzl e

o State Is Implemented as class variable in class Puzzl e
— state does not have to be passed back and forth
— representation is hidden from client

* Interface of Puzzl e class:

void init(); //initialize the state
int tile(int r, int ¢c); //return tile in position (r,c)
voi d nove(char d); //nove in direction d

Implementation using S

cl ass TestPuzzle {

public static void main(String[] args) {
Puzzlie.init();
di splay();
Puzzl e. nove(' N);

}
public static void display() {
for (int r =0;r < 3; r++) {
for (int ¢ =0; c < 3; c+4)

Systemout. print(Puzzle.tile(r,c)
+ " "),
System out. println();
}

[/ new i ne

}
}

class Puzzle {
private static int state;

public static void init {
state = 123456879;

}

public static int tile(int r, int c) {
return state/ ((int)Math. pow 10, 8-(3*r+c))) %0;
}

public static void nove(char d) {

}

Critique of Interface S

e Data abstraction: yes!
— Puzzl e class implementer chose to implement state as i nt
— State representation is not visible outside of Puzzl e class

— If Puzzl e class implementer decides to change implementation
of state to | ong, client code does not have to change

 Problem: only one client and one puzzle at a time
— state is a private class variable in class Puzzl e

— Mechanism we have used (class variable) gives right of puzzle
creation to implementer of class rather than the client of the
class

A Sneaky Solution

Static area

Puzzl el. state

Puzzl e2. state

I nt:

I nt

\
\
N
N\
\
/

 Make copies of Puzzl e class and rename

them

e |f client wants n puzzles, make n copies

Sneaky Implementation of S

cl ass TestPuzzle {

public static void main(String[] args) { ||class Puzzlel {

Puzzlel.init(); private static int state;
di spl ayl1();
Puzzl el. nove(' N); public static void init {
state = 123456879;
}
Puzzle2.init();
di spl ay2();
Puzzl e2. move(' N); }
} class Puzzle2 {

private static int state;

public static void displayl() {
public static void init {

- state = 123456879;
} }

public static void display2() {

}
}

Critigue

Data abstraction: yes

Creation on demand: yes, but at cost of
duplication of code

Must know number of instances at compile time
Naming issues

The Case for Objects

e Copying and renaming gives us

— a unigue name for each instance of the puzzle

— a separate variable (st at e) to store the state of each
Instance

— allows multiple simultaneous instances of the puzzle
e But all the instances are identical!

 Can we design language mechanisms to
support the creation of separate instances?

Solution: Ask Gutenberqg!

Algorithm for making a copy of a book in the middle ages:
— Hire a monk
— Give monk paper and quill
— Ask monk to copy text of book
Algorithm for making n copies of a book
— Hire a monk
— Give monk lots of paper and quills
— Ask monk to copy text of book n times
Modern algorithm (Gutenberg, Strasbourg ca.1450 AD):
— First make a template using movable type
— Stamp out as many copies of book as needed
Copying class code is like medieval approach to copying books!
How do we exploit Gutenberg’s insight in our context?
— What is the template for puzzles?
— How do we stamp out new puzzle instances from the template?
— How do we name different puzzle instances?

kit "
et Eo e [A o P L
TS A
e g S i
[T SE)
T |
= e g TR
S PR e e
Ega b i il rpp P L
Cxlun ety A 12k o dullide

W) i e
5]

(A atiew
o] b

y
- L] i
'-hI :}' 3

afrmm i sl e e

b =t i el
i o ’ﬁ:

Gutenberg Bible

— The Huntington Collection

Object-Oriented Languages

* The class definition is the template
 Instances of the class are called objects

* Objects are stamped out (created) in an area of memory
called the heap

* instance variables: when different instances are stamped
out, they will each have their own copies of all instance
variables (e.g. st at e)

 instance methods: code is shared among all instances of
the same class, but references to instance variables in
the code access those belonging to the correct object!

e constructor: a special method associated with a class
Invoked to create new instances of that class

Heap Allocation

Program area

class Puzzle { .- .
orivate int state: Init........... tile...... move......
public void init() { K\T\Z\
tate = 123456879;
} state \ / \
public int tile(int r, int c) { @zzle
} return state/ ((int)Mth. pow 10, 8-(3*r+c))) %0; state \int int:
init | \ init
public void nove(char d) {) / . \\
. tile / tile \
N\
} } move | I move |)
* Heap shows two instances of class Puzzl e
Heap

» Class name is used as type of object
« Each object has its own instance variables
* Instance variables are declared private, so not accessible to client

« Compiled instance methods are stored in Program area
* All objects of type Puzzl e share code for instance methods as shown

Naming Instances

Reference: a variable that is a name for objects of some class
— contains either a pointer to some object or nul |

Type of reference = class name
Puzzl e pl; //declare a reference variable
Creation of an object using a constructor and assignment to a
reference:
pl = new Puzzle(); //create a new object, call it pl
Puzzle p2 = new Puzzle(); //can do both at once

Invoking instance method
pl.init();
Implementation:
—examine object pointed to by p1
—look inside object for starting address of method named i ni t
— invoke that method

Client Code

class TestPuzzle {

}

public static void

}

public static void display(Puzzle p) {

new Puzzl e();
new Puzzl e();

Puzzl e puzzl el
Puzzl e puzzl e2
puzzlel.init();
di spl ay(puzzl el);
puzzle2.init();

di spl ay(puzzl e2);

\ e

mai n(String[] args) {

Program area

Puzzle

—

~—

puzzle2

puzzlel
args

Puzzle:

Puzzle:

String]:

Heap

Stack frame for main

Method Invocation

 References can be passed as parameters
— formal parameter becomes name for object in callee
— callee can manipulate object using that name

— on method return, caller sees any changes made to
object by callee

o Example: display method

— no need to have different code for each puzzle
Instance

Program area
cl ass Test Puzzl e { 9

public static void main(String[] args) {

Puzzl e puzzl el= new Puzzl e();
Puzzl e puzzl e2 = new Puzzle();

é'rlit....tile moveﬂ...

puzzlel.init();
=3P di spl ay(puzzlel);

puzzle2.init();

di spl ay(puzzl e2);

} v
public static void display(Puzzle p) {
for (int r =0;r < 3; r++) {
for (int ¢ =0;, ¢ < 3; c++)
Systemout.print(p.tile(r,c) + " ");
Systemout.printin(" "); //newline
}
}

Heap

VAN

\
zZle
/ ini
/ tile
/ move

Puzzle

-I

AN
\\

} c |

Sta

frame for display

puzzle2 |Puzzle:

puzzlel | Puzzle:

args | String([]:

Stack frame for main

Accessing Instance Variables

Program area

..pl.tile(2,3)...
...p2.tile(0,1)...

Heap

e Q:Howdoestil e method know which

object to manipulate?
« A: Low-level code forti | e takes an extra

Puzzle

parameter: reference to object
e pl.tile(x,y) becomes

pl.tile(pl, x,y)

P 7

C |int;

rint:
this|Puzzle:

Stack frame for invocation of tile

Keyword t hi s

e |n Instance method, t hi s Is a reference to
object in which the method exists

cl ass Test Puzzle {

public static void main(String[] args) {
Puzzl e puzzl el = new Puzzle();
puzzlel.init();

cl ass Puzzle {

public void nove(char d) {

} L
} Test Puzzl e. di spl ay(t hi s);

public static void display(Puzzle p) { J
for (int r =0; r <3; r++) { } o

}

Critigue

Data abstraction: yes

Creation on demand: yes
Duplicate class code: no
Duplicate client code: no

Garbage Collection

Intuitively, an object is live at time t if that object is still in
use and can be accessed by the program after time t
Formally (recursive definition), an object O is live If:

— The runtime stack contains a reference to O

— There is a live object O' that contains a reference to O

Everything else is garbage

Periodically, system detects garbage and reclaims it
Start with the stack, trace all references, mark all objects
seen — anything not marked is garbage

C, C++:

— Pointer arithmetic makes it hard to determine what is a reference

— Storage reclamation must be done explicitly by programmer
(mal | oc, nfree)

— Highly error-prone

Conclusion

Object-oriented languages support data
abstraction and code reuse

Objects (instances of a class) can be created on
demand by client without breaking abstraction

Client can hold a reference to an object, but
Implementation is hidden from it

User-defined types: class names are used as
types of objects and references

