CS211

Computersand Programming
http://www.cs.cor nell.edu/cour ses/cs211/2005su

Lecture4. Grammarsand Parsing
Summer 2005

Announcements

Read Chapter 11 for more about parsing and
stacks

Quiz on Friday: probably 1 Induction problem
and two shortish concept problems.

Check to seeif you areon CMS! If you aren't,
emall us immediately.

Assignment 1 due Tuesday. No class Monday.

If you need a programming partner still, see
me after class.

Application of Recursion

e S0 far, we have written recursive programs on
Integers: factorial, fibonacci, permutations, @

 Let usnow consider anew application,
grammars and parsing, that shows off the full
power of recursion.

 Parsing has numerous applications. compilers,
dataretrieval, datamining,....

Motivation

The cat ate therat.

The cat ate therat slowly.

The small cat ate the big rat slowly.

The small cat ate the big rat on the mat slowly.

The small cat that sat in the hat ate the big rat on the mat slowly.

The small cat that sat in the hat ate the big rat on the mat slowly, then got sick.

— Not all sequences of words are legal sentences
* The ate cat rat the
— How many legal sentences are there?

— How many legal programs are there?
— Are all Java programs that compile legal programs?

— How do we know what programs are legal ?
— http://java.sun.com/docs/books/jls/first_edition/ntml/19.doc.html

Grammars

Sentence => Noun Verb Noun

Noun =>boys
Noun =>qirls
Noun =>dogs
Verb => like
Verb => see

Grammar: set of rules for generating sentences in a language.

Our sample grammar has these rules:
— aSentence can be a Noun followed by a Verb followed by a Noun
— aNoun can be ‘boys’ or ‘girls or ‘dogs
— aVerbcanbe‘like or ‘see
Examples of Sentence:
— boys see dogs
— dogslikegirls

Note: white space between words does not matter

Thisisavery boring grammar because the set of Sentencesisfinite (exactly 18
sentences).

Recursive Grammar

Sentence => Sentence and Sentence
Sentence => Sentence or Sentence
Sentence => Noun Verb Noun

Noun =>boys
Noun =>qirls
Noun =>dogs
Verb => like
Verb => see

Examples of Sentencesin this language:

— boyslikegirls

— boyslike girlsand girlslike dogs

— boyslike girlsand girls like dogs and girls like dogs

— boyslike girlsand girls like dogs and girlslike dogs and girls like dogs

This grammar is more interesting than the one in the last slide because
the set of Sentencesisinfinite.

What makes this set infinite? Answer: recursive definition of Sentence

Grammar Subtleties

 What if we want to add a period at the end of
every sentence?

Sentence => Sentence and Sentence .
Sentence => Sentence or Sentence.
Sentence => Noun Verb Noun .

Noun =>

e Doesthiswork?
 No! This produces sentences like:

girlslike boys . and boys like dogs . .

Sentences with Periods

TopL evel Sentence => Sentence .

Sentence => Sentence and Sentence
Sentence => Sentence or Sentence
Sentence => Noun Verb Noun

Noun => boys
Noun => girls
Noun => dogs
Verb => like
Verb => see

e Addanew rulethat adds a period only at the end of
the sentence.

* Thought exercise: how does this work?

Grammar for Simple Expressions

Expression => integer
Expression => (Expression + Expression)

e Thisisagrammar for ssimple expressions:
— An E can be an integer.

— AnEcanbe‘(‘ followed by an E followed by ‘+’
followed by an E followed by ‘)’

o Set of Expressions defined by this grammar isa
recursively-defined set.

 |slanguage finite or infinite?

e Do recursive grammars awaysyield infinite
anguages?

E => integer

E=>(E+E)

» Here are some legal expressions:
2
(3+ 34)

((4+23) + 89)
((89 + 23) + (23 + (34+12)))
» Here are some illegal expressions:
(3
3+4

» Each legal expression can be parsed into a parse tree.

Parsing

Parsing: given agrammar and some text, determine if text
Isalegal sentence in the language defined by that grammar

For many grammars (e.g. the ssimple expression grammar),
we can write efficient programs to answer this question.

Next slides. parser for our small expression language
— Caveat: code uses CS211In object for doing input from afile.

— Goal: understand the structure of the code to see the parallél
between the language definition (recursive set) and the parser
(recursive function)

Helper class: CS2111In

e On-line code for the CS211In class

 Codeletsyou
— open file for input:
e CS211Inf = new CS211In(String-for-file-name)
— examine what the next thing in fileis. f.peek AtKind()
 Integer?. such as 3, -34, 46
o Word?: such as x, r45, y78z (variable name in Java)
o Operator?. suchas+,-,*,(,), €tc.
— read next thing from file:
 integer: f.getint()
* Word: f.getWord()
o Operator: f.getOp()

e Useful methodsin CS211In class:

— f.check(char c):
o Example: f.check(**"); /ftrue if next thing Ininput is*

e Check if next thingininputisc
— If s0, eat it up and return true
— Otherwise, return false

— f.check(String s):

o Example of itsuse: f.check(“if");
— Return true if next thing ininput isword if

Parser for expression language

static boolean expParser(String fileName) {//returns true if file has single expression
CS211Inf = new CS211In(fileName);
boolean gotlt = getExp(f);
If (f.peekAtKind() == CS211In.EOF) //no junk in file after expression

return gotlt;
else //file contains some junk after expression, so return false
return false;

}

static boolean getExp(CS211In f) {//reads one expression from file
//defined on next dlide

}

Parser for Expression Language

static boolean expParser(String fileName) {//returns true if file has single expression
//defined on previous dlide

}

static boolean getExp(CS211In f) {//reads one expression from file
switch (f.peekAtKind()) {
case CS211In.INTEGER: {//E => integer
f.getint();
return true;
}
case CS211In.OPERATOR: {//E => (E+E)
return f.check(‘(’) &&
getExp(f) &&
f.check(‘+') &&
getExp(f) &&
f.check(‘)"));
}
default: return false;
}/lends switch f.peek AtKind

Note on Boolean Operators

 Java supports two kinds of Boolean operators:
- E1& E2:

» Evaluate both E1 and E2 and compute their conjunction
(i.e.,"and”)

— E1&& E2:

o Evaluate E1. If E1 isfalse, E2 is not evaluated, and value of
expressionisfase. If Elistrue, E2 isevaluated, and value of
expression is the conjunction of the values of E1 and E2.

e |nour parser code, we use & &

— 1f “f.check(‘(*) returns false, we ssimply return false
without trying to read anything more from input file.
This gives agraceful way to handling errors.

— don't worry about this detail if it seemstoo abstruse...

Trace of Recursive Calls to getExp

H(s + (34 + 23))
getExp(')

T

(3+ (34 + 23)) (3+(34 + 23))
getExp() getExp()

/\

(3+ (34 + 23)) (3+ (34 +23))
getEXpiT) getExp()

Modifying Parser to Generate

Code for a Stack Machine

e Let usmodify the parser so that it generates stack
code (for ahypothetical stack machine) to evaluate
arithmetic expressions

» Recall that stacks only give you access to the top
element. We need to be clever about operations.

2 : PUSH 2
STOP

(2+23) - PUSH 2
PUSH 3
ADD
STOP

|dea

« Modify recursive method getExp to return a string
containing stack code for expression it has parsed.

* Top-level method expParser should now tack on a
STOP command after code received from getExp.

* The modified method getExp will generate code in
arecursive way:
— For integer I, It returns string “PUSH” + 1 + “\n”

— For (E1 + E2),
e recursive callsreturn code for E1 and E2
— say these are strings S1 and S2
e method returns S1+S2+“ADD”

CodeGen for Expression language

static String expCodeGen(String fileName) {//returns stack code for expressionin file
CS211Inf = new CS211In(fileName);
String pgm = getExp(f);
return pgm + “STOP\n”; //not doing error checking to keep it ssimple
}
static String getExp(CS211In f) {//no error checking to keep it smple
switch (f.peek AtKind()) {
case CS211In.INTEGER: //E => integer
return “PUSH” + f.getint() + “\n”;
case CS211In.OPERATOR: //[E => (E+E)

{ f.check(‘(");
String s1 = getExp(f);
f.check(‘+);
String s2 = getExp(f);
f.check(')’);
return sl + s2 + “ADD\n”;

}

default: return “ERROR\N”;

}

Trace of Recursive Calls

to getExp usH 34
PUSH 23
] ADD
ADD
LT(S + (34 + 23))
getEXp() PUSH 34
PUSH 3 /\ PUSH 23
ADD
(3+ (34 + 23)) (3+ (34 + 23))
getExp() getExp()
PUSH 34 NH 23
(3+ (34 + 23)) (3+ (34 +23))
getEXpiT) getExp()

Exercises

e Think about recursive calls made to parse and

generate code for simple expressions
. 2
e (2+3)
e ((2+45) + (34 +-9)

e Canyou derive an expression for the total number
of calls made to getExp for parsing an expression?
— Hint: think inductively

e Can you derive an expression for the maximum
number of recursive callsthat are active at any
time during the parsing of an expression?

Exercises

* Write agrammar and recursive program for palindromes?
— mMom
— dad
— 1 prefer pi
— face Car
— red rum sir is murder
— murder for ajar of red rum
— Sex at hoon taxes

* Write agrammar and recursive program for strings AN BN
— AB
— AABB
— AAAAAAABBBBBBB

* Writeagrammar and recursive program for Java identifiers
— <letter> [<letter> or <digit>]%-N
— j27, but not 2j7

Number of recursive calls

e Claim:
of callsto getExp for expression E =
of integersin E +
of addition symbolsin E.
Example: ((2+ 3) +5)
#of calstogetExp=3+2=5

Inductive Proof

o Order expressions by their length (# of tokens)
« E1<E2If length(E1) < length(E2).

:/_-_-_-7'

Proof of # of recursive calls

 Basecase: (length = 1) Expression must be an
Integer. getExp will be called exactly once as
predicted by formula.

e Inductive case: Assume formulaistrue for all
expressions with n or fewer tokens.

— |If there are no expressions with n+1 tokens, result is
trivially true for n+ 1.

— Otherwise, consider expression E of lengthn+1. E
cannot be an integer; therefore it must be of the form
(E1 + E2) where E1 and E2 have n or fewer tokens. By
Inductive assumption, result istrue for E1 and E2.
(contd. on next slide)

Proof(contd.)

#-of-calls-for-E =

=1 + #-of-calls-for-E1 + #-of-calls-for-E2

=1 + #-of-integers-in-E1 + #-of -'+'-in-E1
+ #-of-integers-in-E2 + #-of-'+'-In-E2

= #-of-integers-in-E + #-of-'+'-In-E

as required.

Conclusion

 Recursionisavery powerful technique for writing
compact programs that do complex things.

e Common mistakes:
— Incorrect or missing base cases
— Sub-problems must be simpler than top-level problem

e Try to write description of recursive algorithm and
reason about base cases etc. before writing code.
— Why?
— Syntactic junk such astype declarations ... can create

mental fog that obscures the underlying recursive
algorithm.

— Try to separate logic of program from coding details.

