CS211
Computersand Programming

L ecture 3: Recursion
Summer 2005

Announcements

Small correction to written assignment in
problem 1: the summation isover F not F,

Continue reading Chapter 7

Quiz on Friday: probably 1 Induction
problem and two shortish concept problems.

If you need a programming partner still, see
me after class

Recursion

e Recursion is apowerful technique for specifying
functions, sets, and programs

* Recursively-defined functions and programs
— factorial
— combinations
— differentiation of polynomials

e Recursively-defined sets
— grammars
— expressions
— data structures (lists, trees, ...)

The Factorial Function (n!)

Definen! = n:(n- 1)-(n- 2)---3:2.1 read: “n factoria”
Eg,3=321=6

By convention, 0! =1

Thefunctionint ® int that givesn! on input nis called the
factorial function.

n! isthe number of permutations of n distinct objects

— Thereisjust one permutation of one object. 1! =1

— There are two permutations of two objects. 2! =2
e 12 21

— There are six permutations of three objects. 3! =6
e 123 132 213 231 312 321

fn>1, nl=n(n- 1)!

Permutationsof & 7 S Y

Permutations of
non-green blocks

- - Each permutation of the three non-green
blocks gives four permutations of the four

- . blocks.

Total number = 4-6 = 24 = 4!

A Recursive Program

or=1 Execution of fact(4)
nl =n(n-1)!, n>0 fact(4) 24

static int fact(int n) {

}

fact(3)

If (n ==0) return 1; fact(2)
el se return n*fact(n-1),;

fact(1)

fact(0)

General Approach to Writing
Recursive Functions

1. Trytofind aparameter, say n, such that the
solution for n can be obtained by combining
solutions to the same problem with smaller
values of n (e.g., chess-board tiling, factorial)

2. Fgure out the base case(s) -- small values of n
for which you can just write down the solution
(e.g., Ol =1)

3. Verify that for any value of n of interest,

applying the reduction of step 1 repeatedly will
ultimately hit one of the base cases

The Fibonaccl Function

 Mathematical definition:

fib(0) =1 WO b ,

fib(1) = 1 *——— two base cases

fib(n) =fib(n- 1) +fib(n- 2), n=2

* Fibonacci sequence: 1,1, 2, 3,5, 8, 13, ...

static int fib(int n) {
If (n == 0) return 1;
elseif (n == 1) return 1;
el se return fib(n-1) + fib(n-2);

}

Fibonacci
(L eonardo Pisano,
1170- 12407?)

Statue in Pisa, Italy
Giovanni Paganuccl,
1863

Recursive Execution

static int fib(int n) {

If (n == 0) return 1,

elseif (n ==1) return 1,

el se return fib(n-1) + fib(n-2);
}

Execution of fib(4): fib(4)

‘///////A*

fib(3) fib(2)

‘///”\\\‘ ‘///“\\\‘
fib(2) fib(l) fib(1) fib(0)

fib(l) fib(0)

Combinations (a.k.a. Binomial
Coefficients)

How many ways can you choose r items from

- n
aset Sof ndistinct elements? (r) “n choose r”

(g) = number of 2-element subsetsof S ={A,B,C,D,E}
» subsets containing A: {A,B}, {A,C}, {AD} {AE} (7)

* subsets not containing A
{B,C}{B,D}{B,E}{CD} {CE}{D,E} (5)

Therefore, (g) = (i) T (‘2‘)

Combinations

~— — —
I .

AN AN AN
O35 355 =5

N!

* You can also show that (rr\) = (n-1)!

Combinations

(7) =(")+(T1), n>r>0
(7) =1
(5) =1
(8) Pascal’s 1
| 1 1
@ (¢ oweee Y
5 () G) -~ 1.3 3 1
GINGNONE L 4 6 4 1

@ O @ @@ rt>P sl

Combinations

These are also called binomial coefficients because they

appear as coefficients in the expansion of the binomial
power (X + y)"

(X +y)" = (g)xn +(2)Xn-1y +(2)Xn-2y2+ S (R)yn

= |éo (7) xmiy

Combinations have two base cases

Coming up with right base cases can be tricky!

General idea:
— Determine argument values for which recursive case does not apply
— Introduce a base case for each one of these

Rule of thumb: (not always valid) if you haver recursive
calls on right hand side, you may need r base cases.

Recursive Program for
Combinations

("+(FD), n>r>0

1
P

(7)
(n)
(5)

static int conbs(int n, int r){ [[assume n>=r >=0
If (r == 0 || r == n) return 1; //base cases
el se return conbs(n-1,r) + conbs(n-1,r-1);

}

Polynomial Differentiation

Inductive cases.

d(uv)/dx = uadv/dx + v du/dx
d(u+v)/dx =du/dx + dv/dx
Base cases.

dx/dx =1

dc/dx =0

Example:
d(3x)/dx = 3dx/dx +xd(3)/dx =3-1+x:0 =3

Positive Integer Powers

a'=aaa-a(ntimes)
Alternative description:

=1
al=aal

static int power(int a, int n) {
1f (n == 0) return 1;
el se return a*power(a,n-1);

A Smarter Version

Power computation:

- a=1

— If nisnonzero and even, a = (a?)?

— If nisodd, a'= a:(a"?)?
Javanote: If x and y areintegers, “x/y” returns the integer
part of the quotient
Example:

& = a(@?)? = a@)?® = a((@?)?)? = a(@)

Note: this requires 3 multiplications rather than 5!
What if n were higher?

— savings would be higher

Thisis much faster than the straightforward computation
— Straightforward computation: n multiplications
— Smarter computation: log(n) multiplications

Smarter Version 1n Java

e N=0: %=1
e nnonzero and even: a' = (av?)2
e nodd: a"=a(av?)?

static int power(int a, int n) {
1f (n == 0) return 1,
I nt hal f Power = power(a,n/2),;
1 f (n%2 == 0) return hal f Power *hal f Power ;
return hal f Power *hal f Power * a;

|mplementation of Recursive Methods

local variable parameters
»/ \\

static int power(int a, int n) {
\\\\if (n == 0) return 1,
i nt hal f Power = power(a,n/2);

I f (n% == 0) return hal f Power*hal f Power;
return hal f Power *hal f Power *a;

e The method has two parameters and alocal variable
 Why aren’t these overwritten on recursive calls?

|mplementation of Recursive Methods

 Key idea:
— use a stack to remember parameters and local
variables across recursive calls

— each method invocation gets its own stack frame

e A stack frame contains storage for
— parameters of method
— local variables of method
— return address
— perhaps other bookkeeping info

Stacks

T
stack grows
top dlement [+ top-of-stack
pointer
2nd element
3rd element o Likeastack of plates

* You can push data on top or pop

data off thetop in a LIFO (last-

In-first-out) fashion

bottom & ement

e A gueuelssimilar, exceptitis
FIFO (first-in-first-out)

Java.lang.Stack

o Stack()
 boolean empty()
* E peek()

* E pop()

 push(E item)
e int search(E o)

Creates an empty Stack
Tests if the stack is empty

L ooks at the object at the top of the
stack without removing it from the stack

Removes the object at the top of the
stack and returns that object as the value
of the function

Pushes an item onto the top of the stack

Returns the position of the given item
on the stack

Stack Frames

T
stack grows power(a,]_)
return I
1
power(a,2)
a
return I
5 power(a,5)
a .
* A new stack frameis pushed
return with each recursive call
S » The stack frame is popped
a when the method returns

Conclusion

e Recursion isaconvenient and powerful way to
define functions

e Problems that seem insurmountable can often be
solved in a*“divide-and-conquer” fashion:

— Reduce a big problem to smaller problems of the same
kind, solve the smaller problems

— Recombine the solutions to smaller problems to form
solution for big problem

 |Important application (next lecture): parsing of
languages

