
CS 211

Computers and Programming
http://www.cs.cornell.edu/courses/cs211/2005su

Lecture 3: Recursion
Summer 2005

Announcements

• Small correction to written assignment in
problem 1: the summation is over Fi not Fn

• Continue reading Chapter 7
• Quiz on Friday: probably 1 Induction

problem and two shortish concept problems.
• If you need a programming partner still, see

me after class

Recursion

• Recursion is a powerful technique for specifying
functions, sets, and programs

• Recursively-defined functions and programs
– factorial
– combinations
– differentiation of polynomials

• Recursively-defined sets
– grammars
– expressions
– data structures (lists, trees, ...)

The Factorial Function (n!)
• Define n! = n·(n−1)·(n−2)···3·2·1 read: “n factorial”
• E.g., 3! = 3·2·1 = 6
• By convention, 0! = 1
• The function int → int that gives n! on input n is called the

factorial function.
• n! is the number of permutations of n distinct objects

– There is just one permutation of one object. 1! = 1
– There are two permutations of two objects: 2! = 2

• 1 2 2 1
– There are six permutations of three objects: 3! = 6

• 1 2 3 1 3 2 2 1 3 2 3 1 3 1 2 3 2 1

• If n > 1, n! = n·(n − 1)!

Permutations of
Permutations of
non-green blocks

Each permutation of the three non-green
blocks gives four permutations of the four
blocks.

Total number = 4·6 = 24 = 4!

A Recursive Program

static int fact(int n) {
if (n = = 0) return 1;
else return n*fact(n-1);

}

0! = 1

n! = n·(n−1)!, n > 0

1

1

2

6

Execution of fact(4)

fact(1)

fact(4)

fact(3)

fact(0)

fact(2)

24

General Approach to Writing
Recursive Functions

1. Try to find a parameter, say n, such that the
solution for n can be obtained by combining
solutions to the same problem with smaller
values of n (e.g., chess-board tiling, factorial)

2. Figure out the base case(s) -- small values of n
for which you can just write down the solution
(e.g., 0! = 1)

3. Verify that for any value of n of interest,
applying the reduction of step 1 repeatedly will
ultimately hit one of the base cases

The Fibonacci Function
• Mathematical definition:

fib(0) = 1
fib(1) = 1
fib(n) = fib(n − 1) + fib(n − 2), n = 2

• Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, …

two base cases!

static int fib(int n) {
if (n = = 0) return 1;
else if (n = = 1) return 1;
else return fib(n-1) + fib(n-2);

}

Fibonacci
(Leonardo Pisano,
1170−1240?)

Statue in Pisa, Italy
Giovanni Paganucci,
1863

Recursive Execution
static int fib(int n) {

if (n == 0) return 1;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

}

fib(4)

fib(3) fib(2)

fib(1) fib(0)

fib(2) fib(1) fib(1) fib(0)

Execution of fib(4):

= number of 2-element subsets of S = {A,B,C,D,E}

• subsets containing A: {A,B}, {A,C}, {A,D},{A,E}
• subsets not containing A:

{B,C},{B,D},{B,E},{C,D},{C,E},{D,E}

Therefore, = +

Combinations (a.k.a. Binomial
Coefficients)

How many ways can you choose r items from

a set S of n distinct elements? () “n choose r”
n
r

()4
1

()4
2

()4
1 ()4

2()5
2

()5
2

Combinations

• You can also show that =

= + , n > r > 0

= 1
= 1

()n
r ()n−1

r ()n−1
r−1

()n
n

()n
0

()n
r

n!
r!(n−r)!

Combinations

= + , n > r > 0

= 1
= 1

()n
r ()n−1

r ()n−1
r−1

()n
n

()n
0

()0
0

()1
1()1

0

()2
2()2

1()2
0

()3
3()3

2()3
1()3

0

()4
4()4

3()4
2()4

1()4
0

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

=

Pascal’s
triangle

These are also called binomial coefficients because they
appear as coefficients in the expansion of the binomial
power (x + y)n:

(x + y)n = xn + xn−1y + xn−2y2 + ··· + yn

= Σ xn−iyi()n
i

()n
n()n

0 ()n
1 ()n

2

n

i = 0

Combinations

Combinations have two base cases

• Coming up with right base cases can be tricky!
• General idea:

– Determine argument values for which recursive case does not apply
– Introduce a base case for each one of these

• Rule of thumb: (not always valid) if you have r recursive
calls on right hand side, you may need r base cases.

Two base cases

= + , n > r > 0

= 1
= 1

()n
r ()n−1

r ()n−1
r−1

()n
n

()n
0

Recursive Program for
Combinations

static int combs(int n, int r){ //assume n>=r>=0
if (r == 0 || r == n) return 1; //base cases
else return combs(n-1,r) + combs(n-1,r-1);

}

= + , n > r > 0

= 1
= 1

()n
r ()n−1

r ()n−1
r−1

()n
n

()n
0

Polynomial Differentiation

Inductive cases:
d(uv)/dx = u dv/dx + v du/dx
d(u+v)/dx = du/dx + dv/dx
Base cases:
dx/dx = 1
dc/dx = 0

d(3x)/dx = 3dx/dx + x d(3)/dx = 3·1 + x·0 = 3

Example:

Positive Integer Powers
an = a·a·a···a (n times)

Alternative description:

a0 = 1
an+1 = a·an

static int power(int a, int n) {
if (n = = 0) return 1;
else return a*power(a,n-1);

}

A Smarter Version
• Power computation:

– a0 = 1
– If n is nonzero and even, an = (an/2)2

– If n is odd, an = a·(an/2)2

• Java note: If x and y are integers, “x/y” returns the integer
part of the quotient

• Example:
a5 = a·(a5/2)2 = a·(a2)2 = a·((a2/2)2)2 = a·(a2)2

Note: this requires 3 multiplications rather than 5!
• What if n were higher?

– savings would be higher

• This is much faster than the straightforward computation
– Straightforward computation: n multiplications
– Smarter computation: log(n) multiplications

Smarter Version in Java

• n = 0: a0 = 1
• n nonzero and even: an = (an/2)2

• n odd: an = a·(an/2)2

static int power(int a, int n) {
if (n == 0) return 1;
int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower;
return halfPower*halfPower*a;

}

Implementation of Recursive Methods

static int power(int a, int n) {
if (n == 0) return 1;
int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower;
return halfPower*halfPower*a;

}

• The method has two parameters and a local variable
• Why aren’t these overwritten on recursive calls?

parameters
local variable

• Key idea:
– use a stack to remember parameters and local

variables across recursive calls
– each method invocation gets its own stack frame

• A stack frame contains storage for
– parameters of method
– local variables of method
– return address
– perhaps other bookkeeping info

Implementation of Recursive Methods

• Like a stack of plates
• You can push data on top or pop

data off the top in a LIFO (last-
in-first-out) fashion

• A queue is similar, except it is
FIFO (first-in-first-out)

Stacks

top element

2nd element

3rd element

...

bottom element

...

top-of-stack
pointer

stack grows

• Stack() Creates an empty Stack
• boolean empty() Tests if the stack is empty
• E peek() Looks at the object at the top of the

stack without removing it from the stack
• E pop() Removes the object at the top of the

stack and returns that object as the value
of the function

• push(E item) Pushes an item onto the top of the stack
• int search(E o) Returns the position of the given item

on the stack

java.lang.Stack

Stack Frames

power(a,5)

power(a,2)

power(a,1)

return

2

a

return

a

5

stack grows

return

1

a

• A new stack frame is pushed
with each recursive call

• The stack frame is popped
when the method returns

Conclusion

• Recursion is a convenient and powerful way to
define functions

• Problems that seem insurmountable can often be
solved in a “divide-and-conquer” fashion:
– Reduce a big problem to smaller problems of the same

kind, solve the smaller problems
– Recombine the solutions to smaller problems to form

solution for big problem
• Important application (next lecture): parsing of

languages

