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Announcements

• Small correction to written assignment in 
problem 1: the summation is over Fi not Fn

• Continue reading Chapter 7
• Quiz on Friday: probably 1 Induction 

problem and two shortish concept problems.
• If you need a programming partner still, see 

me after class



Recursion

• Recursion is a powerful technique for specifying 
functions, sets, and programs

• Recursively-defined functions and programs
– factorial 
– combinations
– differentiation of polynomials

• Recursively-defined sets
– grammars 
– expressions
– data structures (lists, trees, ...)



The Factorial Function  (n!)
• Define n! = n·(n−1)·(n−2)···3·2·1     read: “n factorial”
• E.g., 3! = 3·2·1 = 6
• By convention, 0! = 1
• The function int → int that gives n! on input n is called the 

factorial function.
• n! is the number of permutations of n distinct objects

– There is just one permutation of one object.  1! = 1
– There are two permutations of two objects:  2! = 2

• 1 2    2 1
– There are six permutations of three objects:  3! = 6

• 1 2 3     1 3 2     2 1 3     2 3 1     3 1 2     3 2 1

• If n > 1,  n! = n·(n − 1)!



Permutations of
Permutations of 
non-green blocks

Each permutation of the three non-green 
blocks gives four permutations of the four 
blocks.

Total number = 4·6 = 24 = 4!



A Recursive Program

static int fact(int n) {
if (n = = 0) return 1;
else return n*fact(n-1);

}

0! = 1

n! = n·(n−1)!,  n > 0
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Execution of fact(4)

fact(1)

fact(4)

fact(3)

fact(0)

fact(2)

24



General Approach to Writing 
Recursive Functions

1. Try to find a parameter, say n, such that the 
solution for n can be obtained by combining 
solutions to the same problem with smaller 
values of n (e.g., chess-board tiling, factorial)

2. Figure out the base case(s) -- small values of n 
for which you can just write down the solution 
(e.g., 0! = 1)

3. Verify that for any value of n of interest, 
applying the reduction of step 1 repeatedly will 
ultimately hit one of the base cases    



The Fibonacci Function
• Mathematical definition:

fib(0) = 1
fib(1) = 1
fib(n) = fib(n − 1) + fib(n − 2),  n = 2

• Fibonacci sequence:  1, 1, 2, 3, 5, 8, 13, …

two base cases!

static int fib(int n) {
if (n = = 0) return 1;
else if (n = = 1) return 1;
else return fib(n-1) + fib(n-2);

} 



Fibonacci
(Leonardo Pisano,
1170−1240?)

Statue in Pisa, Italy
Giovanni Paganucci,
1863



Recursive Execution
static int fib(int n) {

if (n == 0) return 1;
else if (n == 1) return 1;
else return fib(n-1) + fib(n-2);

} 

fib(4)

fib(3) fib(2)

fib(1) fib(0)

fib(2) fib(1) fib(1) fib(0)

Execution of fib(4):



= number of 2-element subsets of  S  = {A,B,C,D,E}

• subsets containing A: {A,B}, {A,C}, {A,D},{A,E}
• subsets not containing A: 

{B,C},{B,D},{B,E},{C,D},{C,E},{D,E}

Therefore,           =          +  

Combinations (a.k.a. Binomial 
Coefficients)

How many ways can you choose r items from 

a set S of n distinct elements?    ( ) “n choose r”
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Combinations

• You can also show that            =  

= +         ,  n > r > 0
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Combinations
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These are also called binomial coefficients because they 
appear as coefficients in the expansion of the binomial 
power (x + y)n:

(x + y)n =        xn +       xn−1y +       xn−2y2 + ··· +        yn

=  Σ xn−iyi(  )n
i
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Combinations



Combinations have two base cases

• Coming up with right base cases can be tricky!
• General idea:

– Determine argument values for which recursive case does not apply
– Introduce a base case for each one of these

• Rule of thumb: (not always valid) if you have r recursive 
calls on right hand side, you may need r base cases.

Two base cases
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Recursive Program for 
Combinations

static int combs(int n, int r){    //assume n>=r>=0
if (r == 0 || r == n) return 1; //base cases
else return combs(n-1,r) + combs(n-1,r-1);

}
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Polynomial Differentiation 

Inductive cases:
d(uv)/dx    =  u dv/dx  +  v du/dx
d(u+v)/dx  = du/dx  +  dv/dx
Base cases:
dx/dx  = 1
dc/dx  = 0

d(3x)/dx  =  3dx/dx   + x d(3)/dx   = 3·1 + x·0  = 3

Example:



Positive Integer Powers
an = a·a·a···a (n times)

Alternative description:

a0 = 1
an+1 = a·an

static int power(int a, int n) {
if (n = = 0) return 1;
else return a*power(a,n-1);

}



A Smarter Version
• Power computation:

– a0 = 1
– If n is nonzero and even, an = (an/2)2

– If n is odd, an = a·(an/2)2

• Java note: If x and y are integers, “x/y” returns the integer 
part of the quotient

• Example: 
a5 =  a·(a5/2)2 =  a·(a2)2 =  a·((a2/2)2)2   =  a·(a2)2

Note: this requires 3 multiplications rather than 5!
• What if n were higher? 

– savings would be higher

• This is much faster than the straightforward computation
– Straightforward computation:  n multiplications
– Smarter computation:  log(n)  multiplications



Smarter Version in Java

• n = 0:  a0 = 1
• n nonzero and even:  an = (an/2)2

• n odd:  an = a·(an/2)2

static int power(int a, int n) {
if (n == 0) return 1;
int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower;
return halfPower*halfPower*a;

}



Implementation of Recursive Methods

static int power(int a, int n) {
if (n == 0) return 1;
int halfPower = power(a,n/2);
if (n%2 == 0) return halfPower*halfPower;
return halfPower*halfPower*a;

}

• The method has two parameters and a local variable
• Why aren’t these overwritten on recursive calls?

parameters
local variable



• Key idea: 
– use a stack to remember parameters and local 

variables across recursive calls
– each method invocation gets its own stack frame

• A stack frame contains storage for
– parameters of method
– local variables of method
– return address
– perhaps other bookkeeping info

Implementation of Recursive Methods



• Like a stack of plates
• You can push data on top or pop

data off the top in a LIFO (last-
in-first-out) fashion

• A queue is similar, except it is 
FIFO (first-in-first-out)

Stacks

top element

2nd element

3rd element

...

bottom element

...

top-of-stack
pointer

stack grows



• Stack() Creates an empty Stack
• boolean empty() Tests if the stack is empty
• E peek() Looks at the object at the top of the 

stack without removing it from the stack
• E pop() Removes the object at the top of the

stack and returns that object as the value
of the function

• push(E item) Pushes an item onto the top of the stack
• int search(E o) Returns the position of the given item

on the stack

java.lang.Stack



Stack Frames

power(a,5)

power(a,2)

power(a,1)

return

2

a

return

a

5

stack grows

return

1

a

• A new stack frame is pushed 
with each recursive call

• The stack frame is popped 
when the method returns 



Conclusion

• Recursion is a convenient and powerful way to 
define functions

• Problems that seem insurmountable can often be 
solved in a “divide-and-conquer” fashion:
– Reduce a big problem to smaller problems of the same 

kind, solve the smaller problems
– Recombine the solutions to smaller problems to form 

solution for big problem
• Important application (next lecture): parsing of 

languages


