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Announcements
• Assignment 1 is up (really). Get started on it!

• Office hours and Consulting hours are now (mostly) listed 
on the website. Consulting is in Upson 328. The door 
should be open during consulting hours.

• Read/Review Chapter 7 of Weiss. It has many great 
examples that won’t be covered in lecture. Don’t worry if 
you don’t understand the running time analysis yet.

• Java Boot Camp is *tonight* 7-10pm in Upson B7

• CMS: We will be added students to CMS soon.



Overview

• Recursion
– a programming strategy that solves a problem by 

reducing it to simpler or smaller instance(s) of the same 
problem

• Induction
– a mathematical strategy for proving statements about 

natural numbers 0,1,2,... (or more generally, about 
inductively defined objects)

• Induction and recursion are very closely related



Defining Functions
• It is often useful to write a given function in 

different ways
– Let  S : int → int  be the function where S(n) is 

the sum of the integers from 0 to n.  E.g.,
S(0) = 0            S(3) = 0+1+2+3 = 6

– Definition: iterative form
• S(n) = 0+1+ …+ n

– Another characterization: closed form
• S(n) = n(n+1)/2



Sum of Squares

• Here is a more complex example.
– Let SQ : int → int be the function that gives the sum of 

the squares of integers from 0 to n.  E.g.,

SQ(0) = 0    SQ(3) = 02 + 12 + 22 + 32 = 14
• Definition:  SQ(n) = 02 + 12 + … + n2

• Is there an equivalent closed-form expression?



Closed-form expression for SQ(n)

• Sum of integers between 0 through n was n(n+1)/2 
which is a quadratic in n.

• Inspired guess: perhaps sum of squares of integers 
between 0 through n is a cubic in n.

• So conjecture: SQ(n) = an3+bn2+cn+d where 
a,b,c,d are unknown coefficients.

• How can we find the values of the four 
unknowns?
– Use any 4 values of n to generate 4 linear equations, 

and solve



• Use  n=0,1,2,3
• SQ(0) =   0 = a·0  + b·0 + c·0 +d
• SQ(1) =   1 = a·1  + b·1 + c·1 + d
• SQ(2) =  5 = a·8  + b·4 + c·2 + d
• SQ(3) = 14 = a·27 + b·9 + c·3 +d
• Solve these 4 equations to get

a = 1/3, b = ½, c = 1/6, d = 0

Finding coefficients
SQ(n) = 02+12+…+n2 = an3+bn2+cn+d



• This suggests 
SQ(n) = 02 + 12 + … + n2 

= n3/3  + n2/2   + n/6
= n(n+1)(2n+1)/6

• Question: How do we know this closed-form 
solution is true for all values of n?
– Remember, we only used n = 0,1,2,3 to determine these 

co-efficients. We do not know that the closed-form 
expression is valid for other values of n.



• One approach:
– Try a few other values of n to see if they work.
– Try n = 5:     SQ(n) = 0+1+4+9+16+25 = 55
– Closed-form expression: 5·6·11/6 = 55
– Works!
– Try some more values…

• Problem: we can never prove validity of closed-
form solution for all values of n this way since 
there are an infinite number of values of n.



To solve this problem, let us express SQ(n) in another way.

SQ(n) = 02 + 12 + … + (n − 1)2 + n2

SQ(n − 1)

SQ(0) = 0

SQ(n) = SQ(n − 1) + n2,   n > 0

This leads to the following recursive definition of SQ:

To get a feel for this definition, let us look at 

SQ(4) = SQ(3) + 42 = SQ(2) + 32 + 42 = SQ(1) + 22 + 32 + 42 

= SQ(0) + 12 + 22 + 32 + 42 = 0 + 12 + 22 + 32 + 42 



SQ(0) = 0
SQ(n) = SQ(n − 1) + n2,   n > 0

Notation for recursive functions

Base case

Recursive case



SQr(0) = 0
SQr(n) = SQr(n-1) + n2,   n > 0

SQc(n) = n(n+1)(2n+1)/6

Can we show that these two functions are equal?

(r=recursive)

(c=closed-form)



Dominoes

• Assume equally spaced dominoes, and assume that spacing 
between dominoes is less than domino length.

• How would you argue that all dominoes would fall?
• Dumb argument:

– Domino 0 falls because we push it over.
– Domino 0 hits domino 1, therefore domino 1 falls.
– Domino 1 hits domino 2, therefore domino 2 falls.
– Domino 2 hits domino 3, therefore domino 3 falls.
– ...

• Is there a more compact argument we can make?

0 1 2 3 54



Better argument

• Argument:
– Domino 0 falls because we push it over (base case).
– Assume that domino k falls over (inductive hypothesis). 
– Because domino k’s length is larger than inter-domino spacing, it 

will knock over domino k+1 (inductive step).
– Because we could have picked any domino to be the kth one, we 

conclude that all dominoes will fall over (conclusion).
• This is an inductive argument.
• This is called weak induction. There is also strong 

induction (later).
• Not only is it more compact, but it works for an infinite 

number of dominoes!



Weak induction over integers

• We want to prove that some property P(n) holds 
for all integers n > 0.

• Inductive argument:
– Base case P(0): Show that property P is true for 0.
– Inductive step: P(k) implies P(k+1): Assume that P(k)

is true for an unspecified integer k (this is the inductive 
hypothesis).  Under this assumption, show that P(k+1) 
is true.

– Because we could have picked any k, we can conclude 
that P(n) holds for all integers n > 0.



SQr(n) = SQc(n) for all n?

Prove P(0).

Assume P(k) for unspecified k, and

prove P(k+1) under this assumption.

P(0) P(1) P(2) P(k) P(k+1)

Define  P(n) as SQr(n)= SQc(n)



SQc(n) = n(n+1)(2n+1)/6
SQr(0) = 0

SQr(n) = SQr(n-1) + n2,  n > 0

P(0): SQr(0) = 0 = SQc(0)

P(k) => P(k+1): Assume SQr(k) = SQc(k), prove that SQr(k+1) = SQc(k+1)

SQr(k+1) = SQr(k) + (k+1)2                            (definition of SQr)

= SQc(k) + (k+1)2 (inductive hypothesis)

= k(k+1)(2k+1)/6  + (k+1)2    (definition of SQc)

= (k+1)(k+2)(2k+3)/6          (algebra)

= SQc(k+1)                            (definition of SQc)

Therefore SQr(n) = SQc(n) for all n.

Let  P(n) be the proposition that SQr(n) = SQc(n).

Proof by induction:



Another example
Prove that 0+1+...+n = n(n+1)/2

• Basis n=0:
– 0 = 0 

• Inductive step:
– Assume 1+2+...+k = k(k+1)/2 for an unspecified k.  This is the 

inductive hypothesis.
– Under this assumption, show that 1+2+...+(k+1) = (k+1)(k+2)/2.
– 0 + 1 + … + k + (k+1) = (0 + 1 + … + k) + (k+1)

= k(k+1)/2 + (k+1)
= (k+1)(k+2)/2 

– Therefore, if result is true for k, it is true for k+1.

• Conclusion: the result holds for all n.



Note on base case 

• Sometimes we are interested in showing some proposition 
is true for integers = b

• Intuition: we knock over domino b, and dominoes in front 
get knocked over. Not interested in 0,1,…,(b−1)

• In general, base case in induction does not have to be 0.
• If base case is some integer b, induction proves the 

proposition for n = b, b+1, b+2, …
• Does not say anything about n = 0,1,…,b−1
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Weak induction: nonzero base case

• Sometimes we want to prove that some 
property P holds for all integers n > b

• Inductive argument:
– P(b): show that property P is true for b
– P(k) => P(k+1): show that if property P is true for 

k, then it is true for k+1
• We can conclude that P(n) holds for all n > b
• We don’t care about n < b (and in fact, P(n) 

may not be true for n < b!)



Weak induction: nonzero base case

• Example: You can make any amount of postage 
above 8¢ with some combination of 3¢ and 5¢
stamps.

• Basis: true for 8¢:  8 = 3 + 5
• Induction step: suppose true for k.

– If used a 5¢ stamp to make k, replace it by two 3¢ stamps.  
Get k+1.

– If did not use a 5¢ stamp to make k, must have used at least 
three 3¢ stamps.  Replace three 3¢ stamps by two 5¢
stamps.  Get k+1.



More on induction

• In some problems, it may be tricky to 
determine how to set up the induction:
– What are the dominoes?

• This is particularly true in geometric 
problems that can be attacked using 
induction. 



A Tiling Problem

• A chessboard has one square cut out of it.  Can the 
remaining board be tiled using tiles of the shape shown in 
the picture (rotation allowed)?

• Not obvious that we can use induction!

8

8



Idea

• Consider boards of size 2n x 2n for n = 1,2,…
• Basis: show that tiling is possible for 2 x 2 board.
• Inductive step: assuming 2k x 2k board can be tiled, 

show that 2k+1 x 2k+1 board can be tiled.
• Conclude that any 2n x 2n board can be tiled, n = 

1,2,…
• Chessboard (8 x 8) is a special case of this 

argument.  We have proved the 8 x 8 special case 
by solving a more general problem!



Basis

• The 2 x 2 board can be tiled regardless of which 
one of the four pieces has been omitted 

2 x 2 board



4 x 4 case

• Divide the 4 x 4 board into four 2 x 2 sub-boards. 
• One of the four sub-boards has the missing piece.
• By the induction hypothesis, that sub-board can be tiled 

since it is a 2 x 2 board with a missing piece.
• Tile the center squares of the three remaining sub-boards 

as shown. 
• This leaves 3 2 x 2 boards with a missing piece, which can 

be tiled by the induction hypothesis.



2n+1 x 2n+1 case

• Divide board into four sub-boards and tile the 
center squares of the three complete sub-boards.

• The remaining portions of the sub-boards can be 
tiled by the assumption about 2n x 2n boards.



When induction fails

• Sometimes an inductive proof strategy for some 
proposition may fail.

• This does not necessarily mean that the 
proposition is wrong.
– It may just mean that the inductive strategy you are 

trying fails.

• A different induction hypothesis (or a different 
proof strategy altogether) may succeed.



Tiling example (cont.)
• Let us try a different inductive strategy which will 

fail.
• Proposition: any n x n board with one missing 

square can be tiled.
• Problem: a 3 x 3 board with one missing square 

has 8 remaining squares, but our tile has 3 squares. 
Tiling is impossible. 

• Therefore, any attempt to give an inductive proof 
is proposition must fail.

• This does not say anything about the 8x8 case.



Strong induction
• We want to prove that some property P holds for 

all n.
• Weak induction:

– P(0): show that property P is true for 0
– P(k) => P(k+1): show that if property P is true for k, it 

is true for k+1
– Conclude that P(n) holds for all n.

• Strong induction:
– P(0): show that property P is true for 0
– P(0) and P(1) and … and P(k) => P(k+1): show that if 

P is true for numbers less than or equal to k, it is true 
for k+1

– Conclude that P(n) holds for all n.
• Both proof techniques are equally powerful. 



Strong Induction Example
• Prove that every integer greater than 1 can be 

written as a product of prime numbers

• Base Case: 2 is prime
• Inductive Step: Assume all number less than or 

equal to k can be written as a product of primes. 
Consider k+1:
– Case 1: k+1 is prime, and we’re done.
– Case 2: k+1 is not prime. Then k+1 = x*y for x,y>1. 

Certainly x and y are both less than k+1. So each can be 
written as a product of primes (by the strong induction 
hypothesis), so multiplying both sets of primes together 
gives a representation of k+1 as a product of primes.

• So we conclude, by induction, that all integers 
greater than 1 are a product of primes.



…that looked like Recursion
• Examining that proof, we see that what we 

really did was take a number, factor it, and 
then factor each of those numbers into 
primes.

• In fact, that’s pretty much how most people 
prime factor a number. The inductive proof 
suggested a recursive algorithm.

• What is the relationship between recursion
and induction?



Conclusion

• Induction is a powerful proof technique
• Recursion is a powerful programming 

technique
• Induction and recursion are closely related.  

We can use induction to prove correctness 
and complexity results about recursive 
programs.  Examples next time!


