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Lecture 18: Search Trees



Announcements

• Prelim 2 will be graded by next Tuesday or 
Wednesday

• Assignments 5&6 will be a single double assignment, 
assigned this weekend and due Sunday August 7.

• Quiz tomorrow on Graphs (not Search Trees)
• Reading: Weiss 19.1, 19.3, 19.4



Some Search Structures

• Sorted Arrays
– Advantages

• Search in O(log n) time (binary search)
– Disadvantages

• Need to know size in advance
• Insertion, deletion O(n) – need to shift elements

• Lists
– Advantages

• No need to know size in advance
• Insertion, deletion O(1) (not counting search time)

– Disadvantages
• Search is O(n), even if list is sorted



Search Trees

• Best of both!
– Search, insert, delete in O(log n) time
– No need to know size in advance

• Several flavors
– AVL trees, 2-3 trees, red-black trees, 

skip lists, random treaps, ...



Binary Search Trees

• Every node has a left child, a right 
child, both, or neither

• Data elements are drawn from a totally 
ordered set (e.g., Comparable)

• Every node contains one data element
• Data elements are ordered in inorder
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Binary Search Trees
In any subtree:
• all elements 

smaller than the 
element at the 
root are in the left
subtree

• all elements 
larger than the 
element at the 
root are in the 
right subtree
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Search

To search for an element x:
• if tree is empty, return false
• if x = object at root, return true
• If x < object at root, search left subtree 
• If x > object at root, search right subtree



Search
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Example: search for 13
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Search

boolean treeSearch(Comparable x,
TreeNode t) {

if (t == null) return false;
switch (x.compareTo(t.data)) {
case 0: return true; //found
case 1: return treeSearch(x, t.right);
default: return treeSearch(x, t.left);

}
}



Insertion

To insert an element x:
• search for x – if there, just return
• when arrive at a leaf y, make x a child of y

– left child if x < y
– right child if x > y



Insertion
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Example: insert 15
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Insertion
void insert(Comparable x, TreeNode t) {
if (x.compareTo(t.data) == 0) return;
if (x.compareTo(t.data) < 0) {

if (t.left != null) insert(x,t.left);
else t.left = new TreeNode(x);

} else {
if (t.right != null) insert(x,t.right);
else t.right = new TreeNode(x);

}
}



Deletion

To delete an element x:
• remove x from its node – this creates a hole
• if the node was a leaf, just delete it
• find greatest y less than x in the left subtree

(or least y greater than x in the right subtree), 
move it to x's node

• this creates a hole where y was – repeat



Deletion
To find least y greater than x:

• follow left children as far as possible in right subtree
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Deletion
To find greatest y less than x:

• follow right children as far as possible in left subtree
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Deletion
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Example: delete 25
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Example: delete 47
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Example: delete 29
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• These operations take time proportional to the 
height of the tree (length of the longest path)

• O(n) if tree is not sufficiently balanced
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Bad case for search, 
insertion, and 
deletion – essentially 
like searching a list

Observation



54

Solution
Try to keep the tree balanced (all paths 
roughly the same length)
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Balanced Trees
• Size is exponential in height
• Height = log2(size)
• Search, insert, delete will be O(log n)
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Creating a Balanced Tree
Creating one from a sorted array:

• Find the median, place that at the root
• Recursively form the left subtree from the 

left half of the array and the right subtree
from the right half of the array
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Keeping the Tree Balanced

• Insertions and deletions can put tree out 
of balance – we may have to rebalance it

• Can we do this efficiently?



AVL Trees

Adelson-Velsky and Landis, 1962

AVL Invariant:
The difference in height between the 
left and right subtrees of any node is 
never more than one 
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An AVL Tree
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• Nonexistent 
children are 
considered to 
have height  –1

• Note that paths 
can differ in 
length by more 
than 1 (e.g., 
paths to 2, 48)



AVL Trees are Balanced

The AVL invariant implies that:
• Size is at least exponential in height

• n ≥ ϕd, where ϕ = (1 + √5)/2 ~ 1.618, 
the golden ratio!

• Height is at most logarithmic in size
• d ≤ log n / log ϕ ~ 1.44 log n



AVL Trees are Balanced

To see that n ≥ ϕd, look at the smallest 
possible AVL trees of each height

AVL Invariant:
The difference in height between the left and right 
subtrees of any node is never more than one
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AVL Trees are Balanced
AVL Invariant:
The difference in height between the left and right 
subtrees of any node is never more than one

A0 A1 A2 A3

A2 A1

To see that n ≥ ϕd, look at the smallest 
possible AVL trees of each height



AVL Trees are Balanced
AVL Invariant:
The difference in height between the left and right 
subtrees of any node is never more than one

A0 A1 A2 A3

A2 A1 ...

Ad

Ad–1 Ad–2

To see that n ≥ ϕd, look at the smallest 
possible AVL trees of each height



AVL Trees are Balanced

A0 A1 A2 A3

A2 A1 ...

Ad

Ad–1 Ad–2

A0 = 1
A1 = 2
Ad = Ad–1 + Ad–2 + 1,   d ≥ 2



AVL Trees are Balanced

A0 = 1
A1 = 2
Ad = Ad–1 + Ad–2 + 1,   d ≥ 2
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AVL Trees are Balanced

A0 = 1
A1 = 2
Ad = Ad–1 + Ad–2 + 1,   d ≥ 2

1   2   4   7   12   20   33   54   88   ...

1   1   2   3   5   8   13   21   34   55   ...
The Fibonacci sequence



AVL Trees are Balanced

A0 = 1
A1 = 2
Ad = Ad–1 + Ad–2 + 1,   d ≥ 2

1   2   4   7   12   20   33   54   88   ...

1   1   2   3   5   8   13   21   34   55   ...
Ad =  Fd+2 – 1  =  O(ϕd)



Rebalancing

• Insertion and deletion can invalidate 
the AVL invariant.

• We may have to rebalance.
• How do we know when to rebalance? 

We need to store height information.



Rebalancing
Rotation
• A local rebalancing operation
• Preserves inorder ordering of the elements
• The AVL invariant can be reestablished with at most 

O(log n) rotations up and down the tree
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u w
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y x

yw
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usingle 
rotate
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A B

C
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Rebalancing
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This was a double rotation! See the text 
for details on rotations.



2-3 Trees

Another balanced tree scheme
• Data stored only at the leaves
• Ordered left-to-right
• All paths of the same length
• Every non-leaf has either 2 or 3 children
• Each internal node has smallest, largest 

element in its subtree (for searching)



2-3 Trees

smallest 2-3 tree of height d = 3
2d = 8 data elements

largest 2-3 tree of height d = 3
3d = 27 data elements

• number of elements satisfies 2d ≤ n ≤ 3d

• height satisfies d ≤ log n



Insertion in 2-3 Trees



Insertion in 2-3 Trees

want to insert new element here
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Insertion in 2-3 Trees

want to insert new element here
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Insertion in 2-3 Trees



Deletion in 2-3 Trees

want to delete this element



Deletion in 2-3 Trees



Deletion in 2-3 Trees

want to delete this element



Deletion in 2-3 Trees

If neighbor has 3 children, borrow one



Deletion in 2-3 Trees

If neighbor has 3 children, borrow one



Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor



Deletion in 2-3 Trees

If neighbor has 2 children, coalesce with neighbor



Deletion in 2-3 Trees

This may cascade up the tree!



Deletion in 2-3 Trees

This may cascade up the tree!



Deletion in 2-3 Trees

This may cascade up the tree!



Deletion in 2-3 Trees

This may cascade up the tree!



Conclusion

Balanced search trees are good
• Search, insert, delete in O(log n) time
• No need to know size in advance
• Several different versions

– AVL trees, 2-3 trees, red-black trees, skip 
lists, random treaps, Huffman trees, ...

– find out more about them in CS482


