CS211
Computersand Programming

Lecture 18: Search Trees

Announcements

Prelim 2 will be graded by next Tuesday or
Wednesday

Assighments 5&6 will be a single double assignment,
assigned this weekend and due Sunday August 7.

Quiz tomorrow on Graphs (not Search Trees)
Reading: Weiss 19.1, 19.3, 19.4

Some Search Structures

e Sorted Arrays
— Advantages
» Search in O(log n) time (binary search)
— Disadvantages
* Need to know size in advance
* Insertion, deletion O(n) — need to shift elements
o Lists
— Advantages
* No need to know size in advance
* Insertion, deletion O(1) (not counting search time)
— Disadvantages
e Search is O(n), even If list Is sorted

Search Trees

e Best of both!
— Search, insert, delete in O(log n) time
— No need to know size In advance

e Several flavors
— AVL trees, 2-3 trees, red-black trees,
skip lists, random treaps, ...

Binary Search Trees

e Every node has a left child, a right
child, both, or neither

e Data elements are drawn from a totally
ordered set (e.g., Conpar abl e)

e Every node contains one data element

e Data elements are ordered in inorder

A Binary Search Tree

Binary Search Trees

In any subtree:

» all elements
smaller than the
element at the
root are in the left
subtree

» all elements
larger than the
element at the
root are in the
right subtree

Search

To search for an element x:
o If tree Is empty, return false

eifx=0
e |fX<O
e|lfX>0

D

o
ject at root, search left subtree

ect at root, return true

o

ect at root, search right subtree

Search

Example: search for 13

Search

bool ean treeSearch(Conparabl e x,
TreeNode t) {
I1f (t == null) return fal se;
swmtch (x.conpareTo(t.data)) {
case O: return true; //found
case 1. return treeSearch(x, t.right),;
default: return treeSearch(x, t.left);

Insertion

To Iinsert an element X:
 search for x — If there, just return

 when arrive at a leaf y, make x a child of y
— leftchildif x <y
— right child if x >y

Insertion

Insertion

Insertion

Insertion

Insertion

Insertion

(25
O 47,

O 9 @@ &
13 549 (o1

1 (8

Insertion

voi d 1 nsert (Conpar abl e X, Treehbde t) {

| f (x.conpareTo(t.data) == 0) return;
| f (X.conpareTo(t.data) < O) {
1f (t.left '=null) insert(x,t.left);

else t.left = new TreeNode(X);
} el se {

1 f (t.right !

el se t.right

nul 1) insert(x,t.right);
new Tr eeNode(x) ;

Deletion

To delete an element x:
* remove X from its node — this creates a hole
o If the node was a leaf, just delete it
e find greatest y less than x in the left subtree
(or least y greater than x in the right subtree),
move It to x's node
e this creates a hole where y was — repeat

Deletion

To find least y greater than Xx:
o follow left children as far as possible in right subtree

25

Deletion

To find greatest y less than x:
« follow right children as far as possible in left subtree

25

Deletion

Example: delete 25

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion

Example: delete 47

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion

Example: delete 29

Deletion

Deletion

Deletion

Deletion

Deletion

Deletion

29
O 48,

» & 80,
549 (o1

Deletion

29

Observation

* These operations take time proportional to the
height of the tree (length of the longest path)
e O(n) If tree Is not sufficiently balanced

Bad case for search,
Insertion, and
deletion — essentially
like searching a list

Solution

ry to keep the tree balanced (all paths
roughly the same length)

Balanced Trees

e Size IS exponential in height
* Height = log,(size)
e Search, insert, delete will be O(log n)

Creating a Balanced Tree

Creating one from a sorted array:

* Find the median, place that at the root

* Recursively form the left subtree from the
eft half of the array and the right subtree
from the right half of the array

116 (13

Keeping the Tree Balanced

e Insertions and deletions can put tree out
of balance — we may have to rebalance it
e Can we do this efficiently?

AVL Trees

Adelson-Velsky and Landis, 1962

AVL Invariant:

The difference In height between the

left and right subtrees of any node is
never more than one

An AVL Tree

* Nonexistent @
children are
considered to @ @
have height -1
* Note that paths e @ @ @
can differ in @ @ @ @
length by more

than 1 (e.qg.,
paths to 2, 48) @

AVL Trees are Balanced

The AVL invariant implies that:

e Size Is at least exponential in height
en3jd wherej =(1+ p)/2~1.618,
the golden ratio!

e Height Is at most logarithmic in size
edElogn/log] ~1.44 logn

AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right

subtrees of any node is never more than one

To see thatn 3 j 9, look at the smallest
possible AVL trees of each height

TAR

AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right

subtrees of any node is never more than one

To see thatn 3 j 9, look at the smallest
possible AVL trees of each height

AO Al AZ
"/ /\

AVL Trees are Balanced

AVL Invariant:
The difference in height between the left and right

subtrees of any node is never more than one

To see thatn 3 j 9, look at the smallest
possible AVL trees of each height

AO Al A2
"/ /\

AVL Trees are Balanced

A, =1
A, =2
A=A +A,+1, d32

'f‘o A A As Aq
/ m N mz

AVL Trees are Balanced

A, =1
A, =2
A=A, +A,+1, d32

1 2 4 7 12 20 33 54 88

AVL Trees are Balanced

A, =1
A, =2
A=A, +A,+1, d32

1 2 4 7 12 20 33 54 88

1 1 2 3 5 8 13 21 34 55
The Fibonacci sequence

AVL Trees are Balanced

A =1
A, =2
Ag=Ag1tAg,t+1, d3

2
2 4 (7 12 20 33 54 88 ...
ENS NN
1 1 2 3 5 8 13 21 34 55 ...
Ag = Fao—1 = O(9

Rebalancing

* Insertion and deletion can invalidate
the AVL invariant.

 We may have to rebalance.

e How do we know when to rebalance?
We need to store height information.

Rebalancing

Rotation

* A local rebalancing operation
* Preserves inorder ordering of the elements
 The AVL invariant can be reestablished with at most

O(log n) rotations up and down the tree

Rebalancing

(25,
O 47,

() (29 29 (&9
13 (54 (T

Example: delete 27

48

Rebalancing

Rebalancing

Rebalancing

Rebalancing

Rebalancing

(25,
O (54

() (29 @ @9
13y @ @ @

Rebalancing

(25,
O (54

() (29 @ @9
13y @ @ @

This was a double rotation! See the text
for detalls on rotations.

2-3 Trees

Another balanced tree scheme
e Data stored only at the leaves
* Ordered left-to-right
 All paths of the same length
e Every non-leaf has either 2 or 3 children
 Each internal node has smallest, largest
element in its subtree (for searching)

2-3 Trees

A

smallest 2-3 tree of heightd = 3 largest 2-3 tree of height d = 3
29 = 8 data elements 34 = 27 data elements

e number of elements satisfies 29 £ n £ 3¢
 height satisfies d £ log n

Insertion In 2-3 Trees

i

Insertion In 2-3 Trees

want to insert new element here

Insertion In 2-3 Trees

En b

Insertion In 2-3 Trees

want to insert new element here

Insertion In 2-3 Trees

onicha

Insertion In 2-3 Trees

b

Insertion In 2-3 Trees

b O

Insertion In 2-3 Trees

LA

Deletion In 2-3 Trees

LAN

|

want to delete this element

Deletion In 2-3 Trees

Deletion In 2-3 Trees

LAN

i

want to delete this element

Deletion In 2-3 Trees

FAN

If neighbor has 3 children, borrow one

Deletion In 2-3 Trees

XY

If neighbor has 3 children, borrow one

Deletion In 2-3 Trees

If neighbor has 2 children, coalesce with neighbor

Deletion In 2-3 Trees

If neighbor has 2 children, coalesce with neighbor

Deletion In 2-3 Trees

This may cascade up the tree!

Deletion In 2-3 Trees

This may cascade up the tree!

Deletion In 2-3 Trees

This may cascade up the tree!

Deletion In 2-3 Trees

N

This may cascade up the tree!

Conclusion

Balanced search trees are good
e Search, insert, delete in O(log n) time
* No need to know size in advance

» Several different versions
— AVL trees, 2-3 trees, red-black trees, skip
lists, random treaps, Huffman trees, ...
— find out more about them in CS5482

