CS 211

Computers and Programming

http://www.cs.cornell.edu/courses/cs211/2005su

Lecture 18: Search Trees

Announcements

- Prelim 2 will be graded by next Tuesday or Wednesday
- Assignments 5&6 will be a single double assignment, assigned this weekend and due Sunday August 7.
- Quiz tomorrow on Graphs (not Search Trees)
- Reading: Weiss 19.1, 19.3, 19.4

Some Search Structures

- Sorted Arrays
 - Advantages
 - Search in O(log n) time (binary search)
 - Disadvantages
 - Need to know size in advance
 - Insertion, deletion O(n) need to shift elements
- Lists
 - Advantages
 - No need to know size in advance
 - Insertion, deletion O(1) (not counting search time)
 - Disadvantages
 - Search is O(n), even if list is sorted

Search Trees

Best of both!

- Search, insert, delete in O(log n) time
- No need to know size in advance

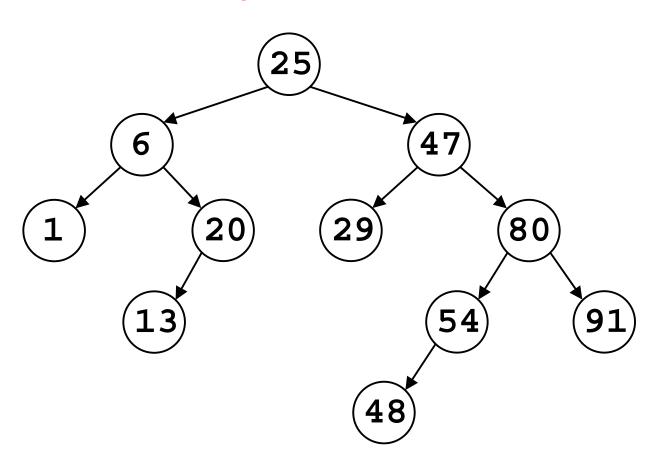
Several flavors

AVL trees, 2-3 trees, red-black trees,
 skip lists, random treaps, ...

Binary Search Trees

- Every node has a left child, a right child, both, or neither
- Data elements are drawn from a totally ordered set (e.g., Comparable)
- Every node contains one data element
- Data elements are ordered in inorder

A Binary Search Tree

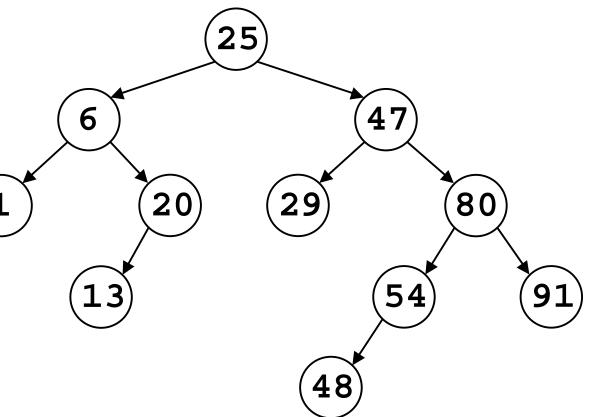


Binary Search Trees

In any subtree:

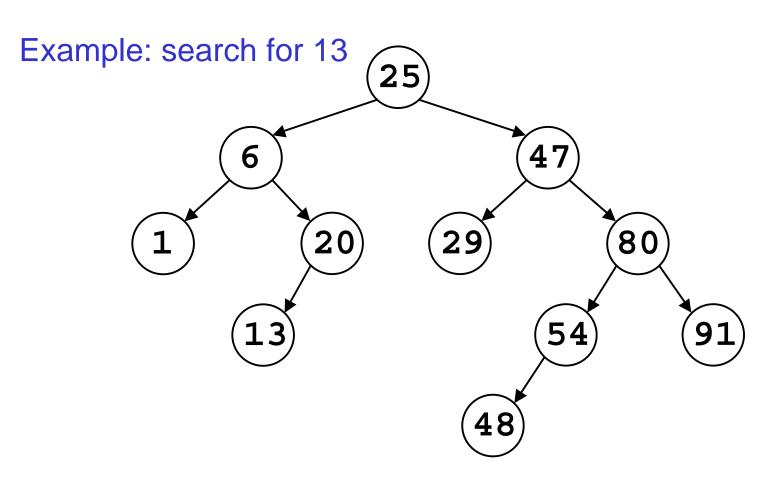
all elements
 smaller than the
 element at the
 root are in the left
 subtree

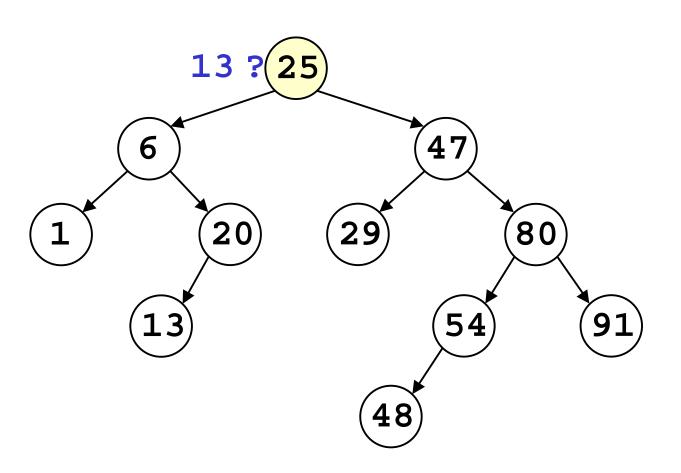
all elements
 larger than the
 element at the
 root are in the
 right subtree

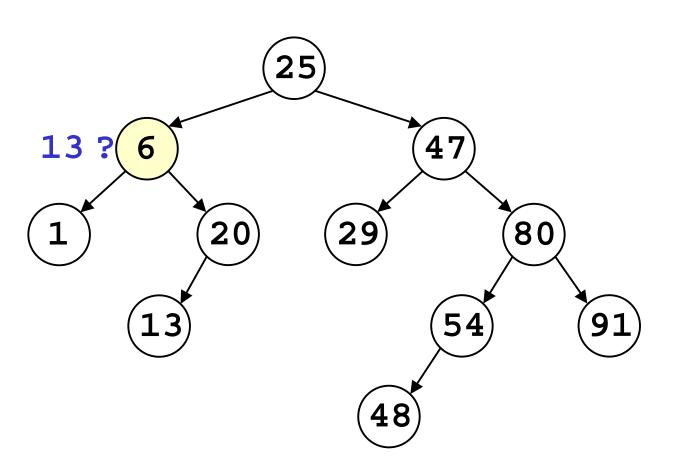


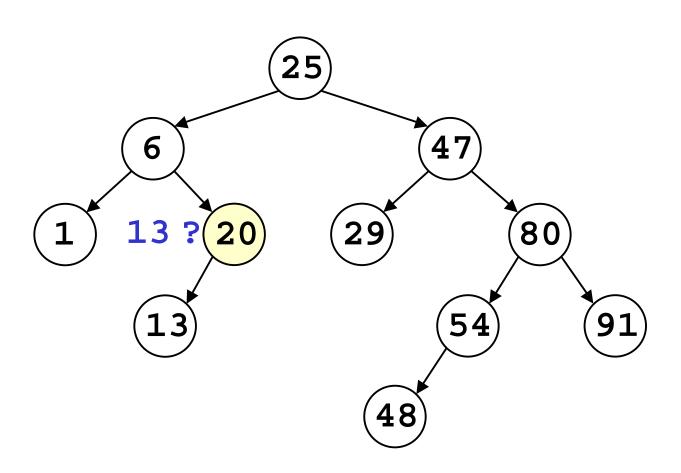
To search for an element x:

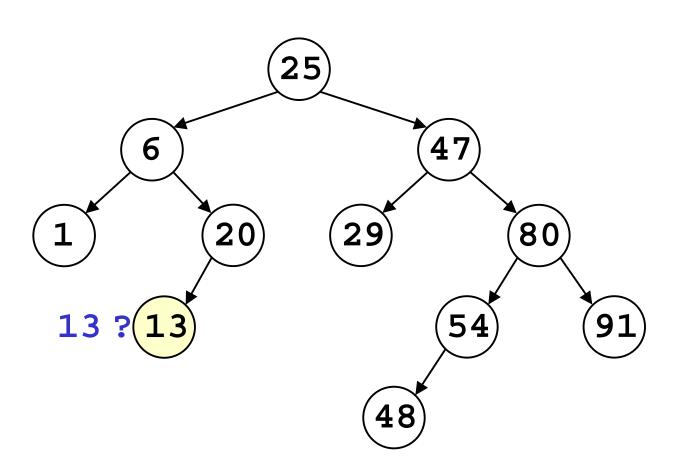
- if tree is empty, return false
- if x = object at root, return true
- If x < object at root, search left subtree
- If x > object at root, search right subtree

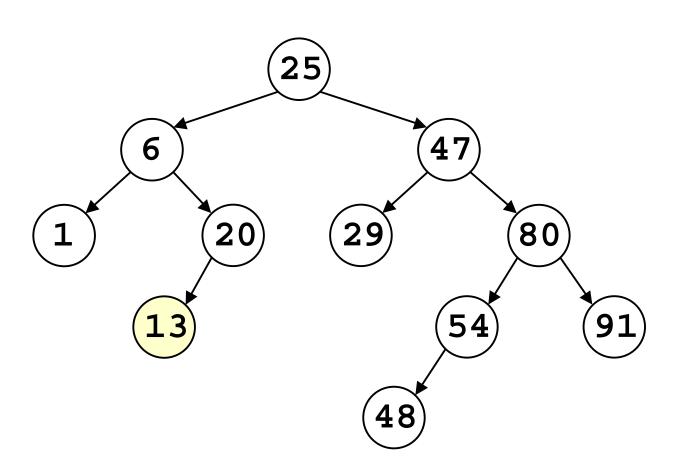






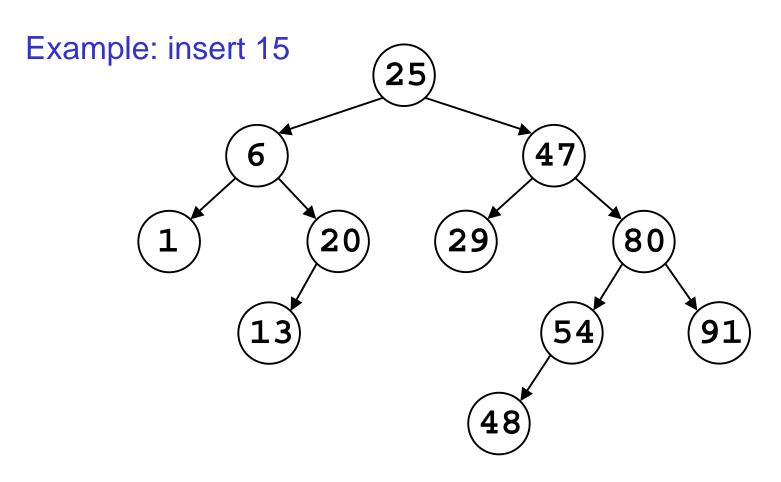


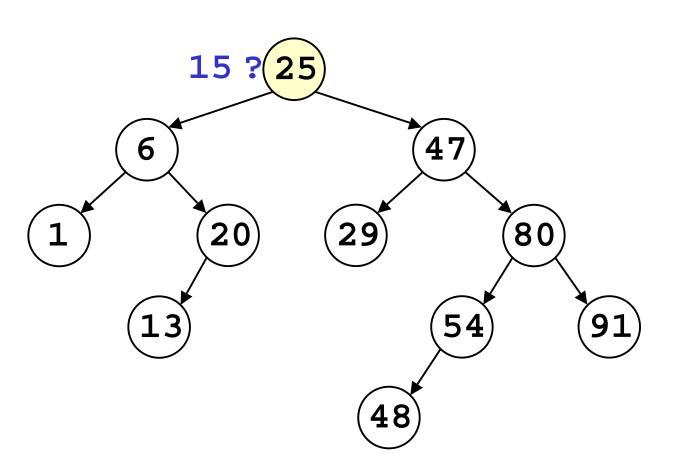


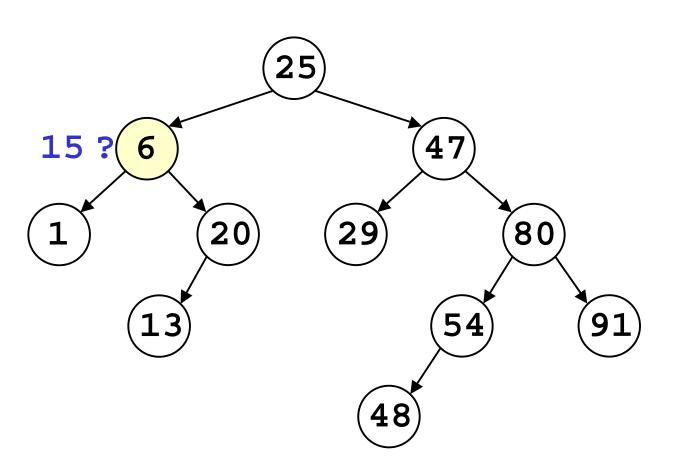


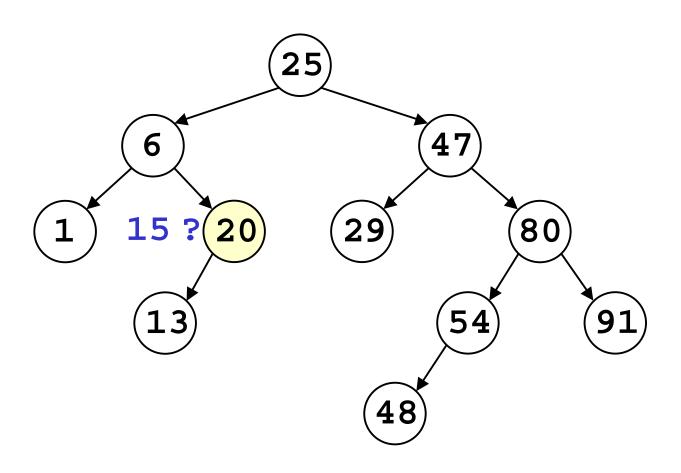
To insert an element x:

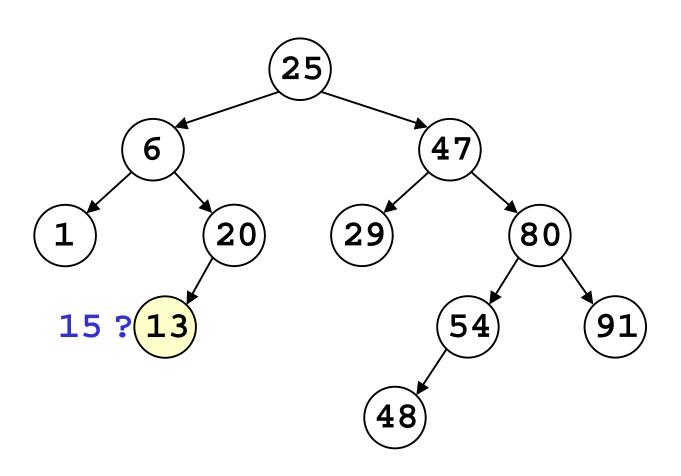
- search for x if there, just return
- when arrive at a leaf y, make x a child of y
 - left child if x < y
 - right child if x > y

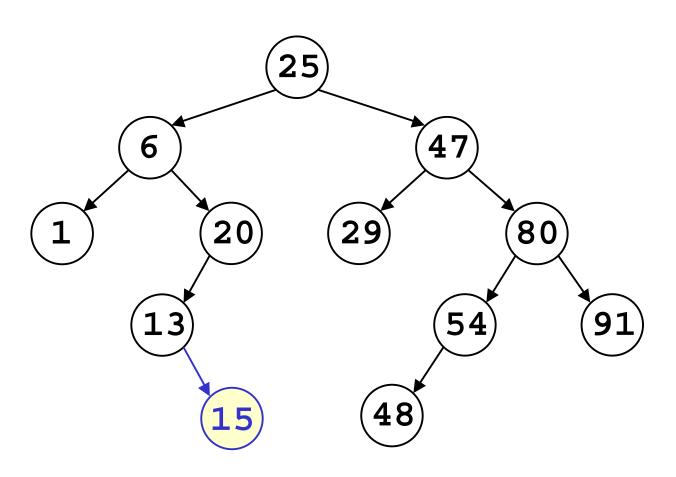












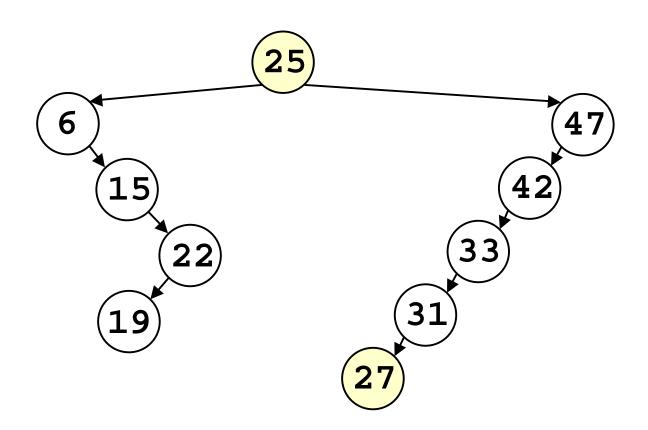
```
void insert(Comparable x, TreeNode t) {
  if (x.compareTo(t.data) == 0) return;
  if (x.compareTo(t.data) < 0) {</pre>
    if (t.left != null) insert(x,t.left);
    else t.left = new TreeNode(x);
  } else {
    if (t.right != null) insert(x,t.right);
    else t.right = new TreeNode(x);
```

To delete an element x:

- remove x from its node this creates a hole
- if the node was a leaf, just delete it
- find greatest y less than x in the left subtree (or least y greater than x in the right subtree), move it to x's node
- this creates a hole where y was repeat

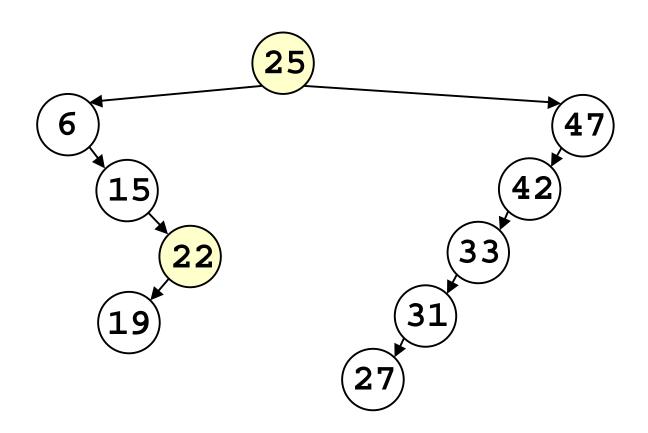
To find least y greater than x:

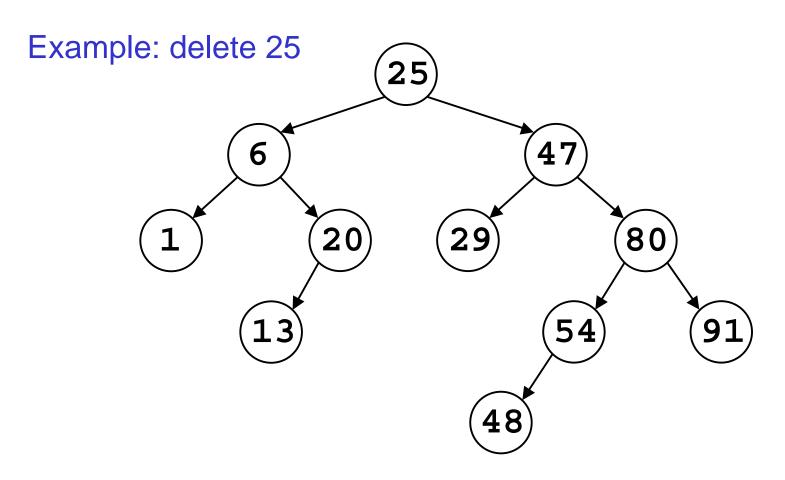
• follow left children as far as possible in right subtree

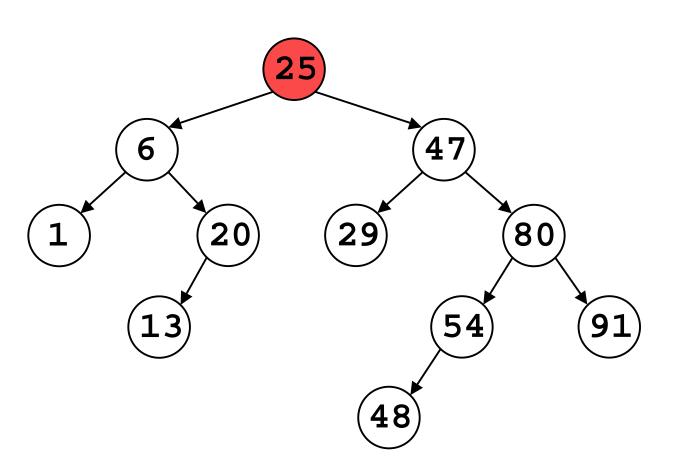


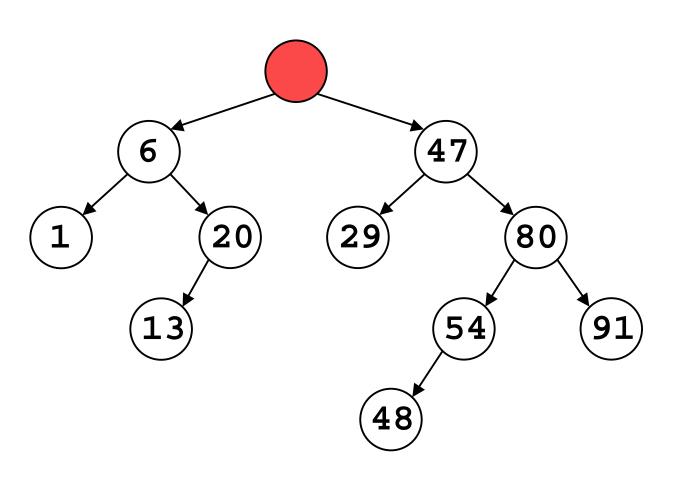
To find greatest y less than x:

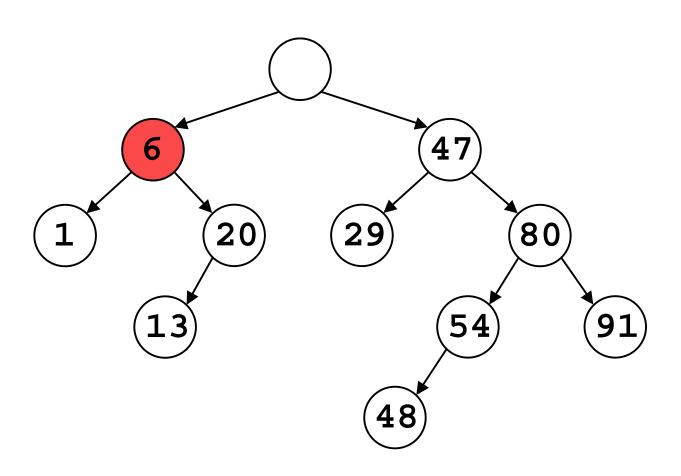
• follow right children as far as possible in left subtree

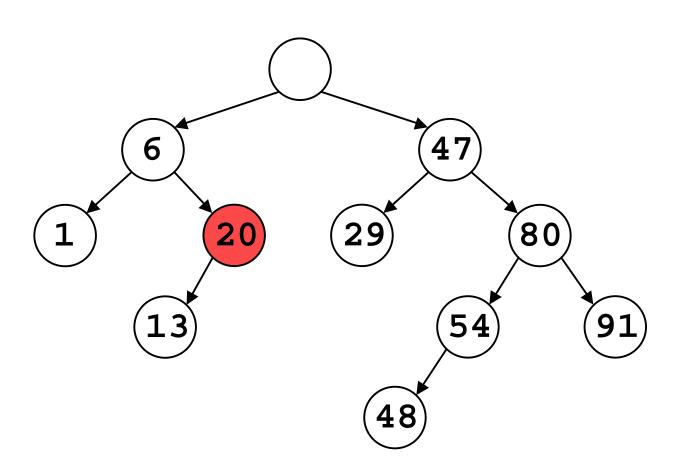


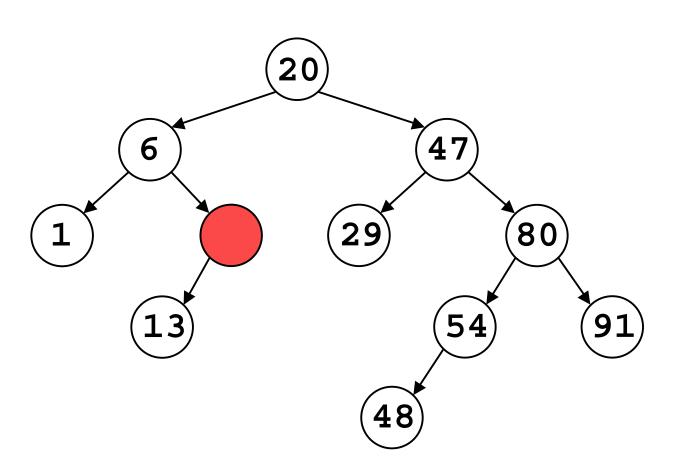


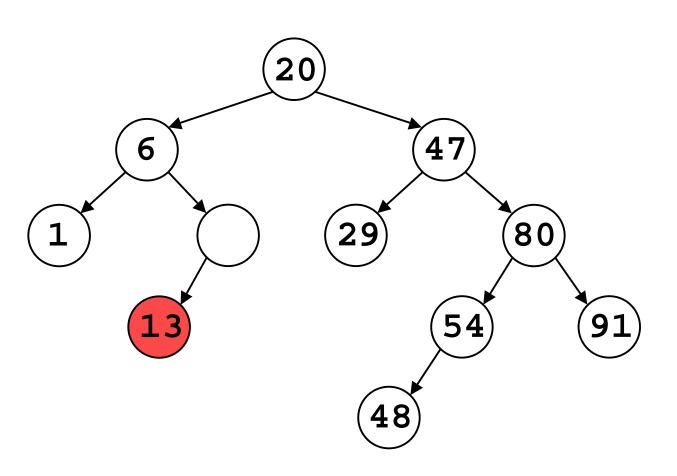


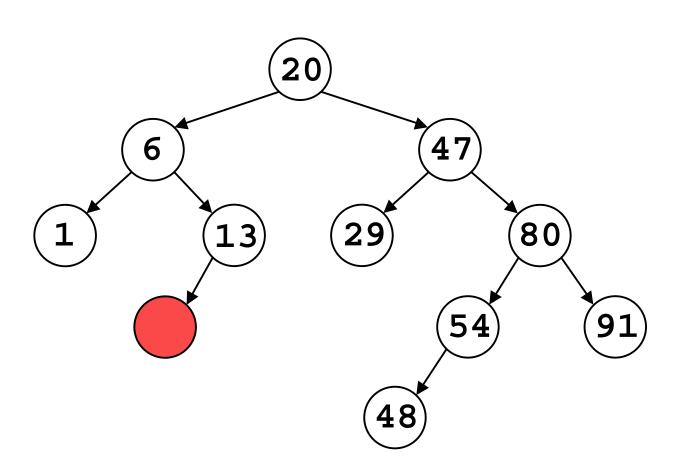


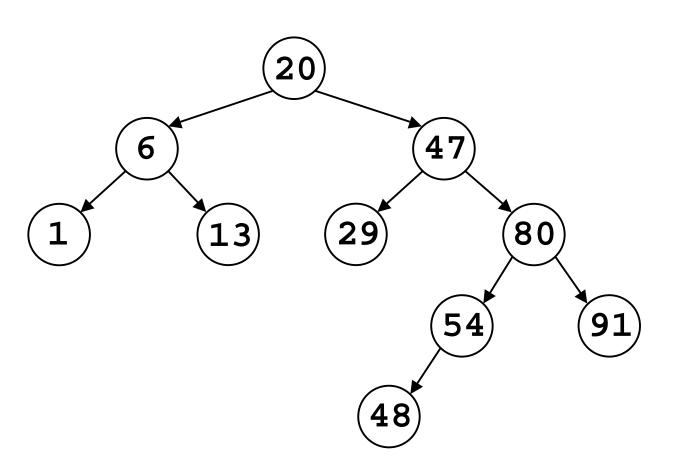


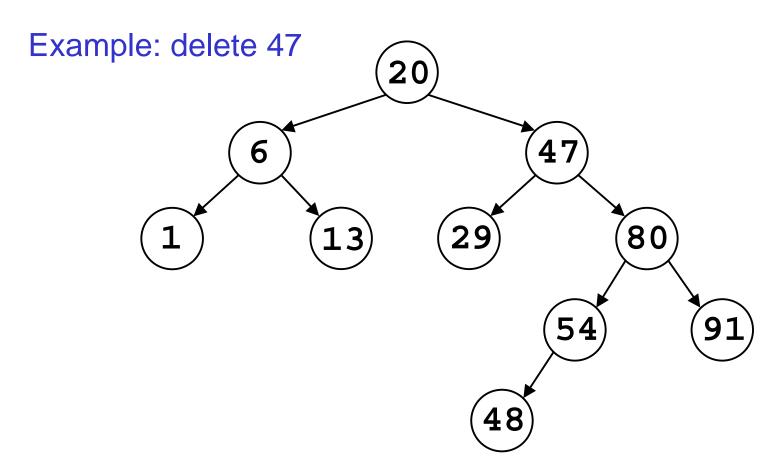


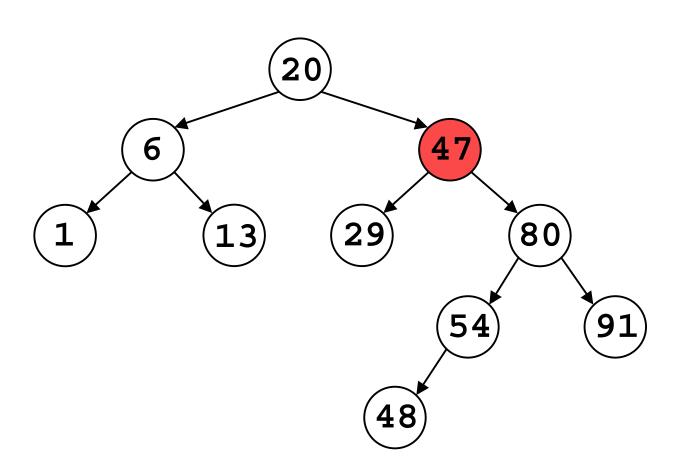


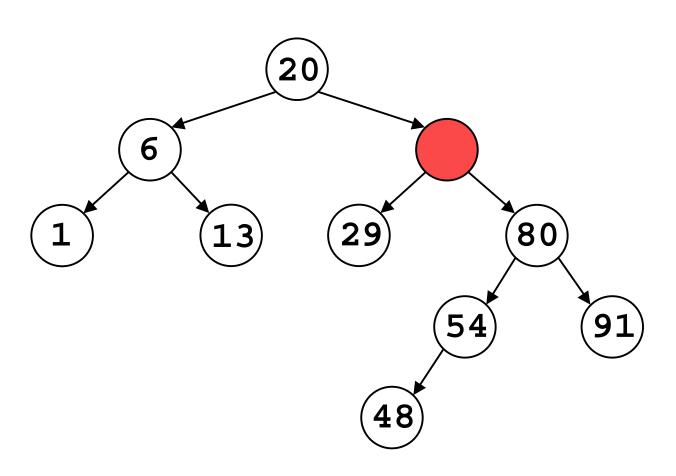


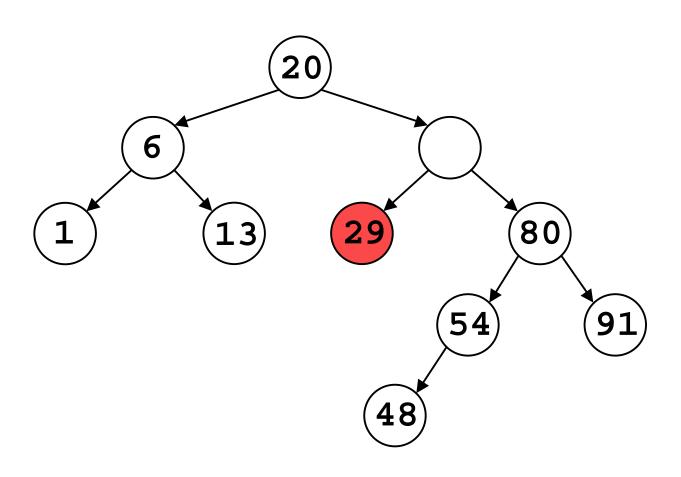


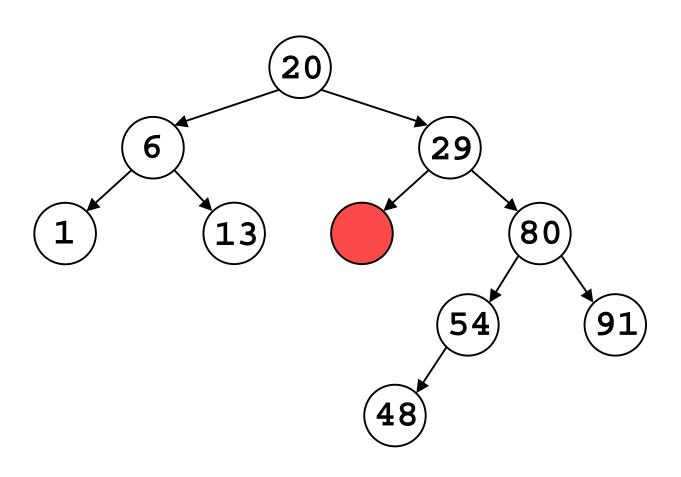


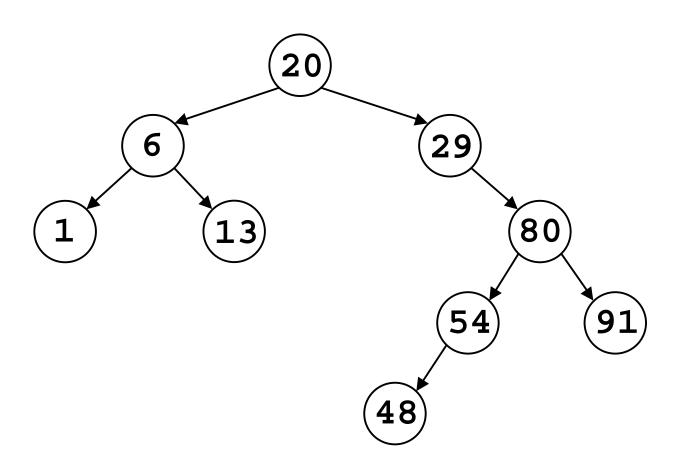


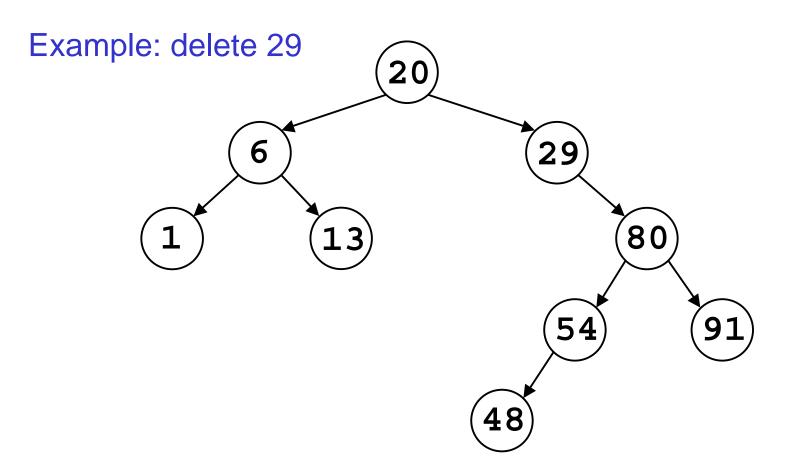


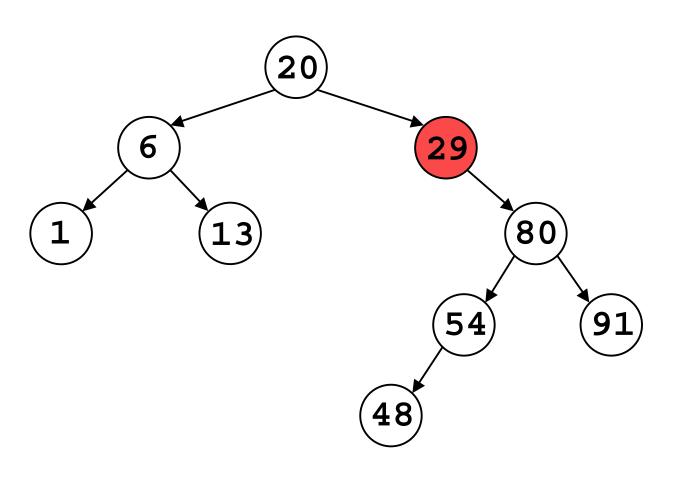


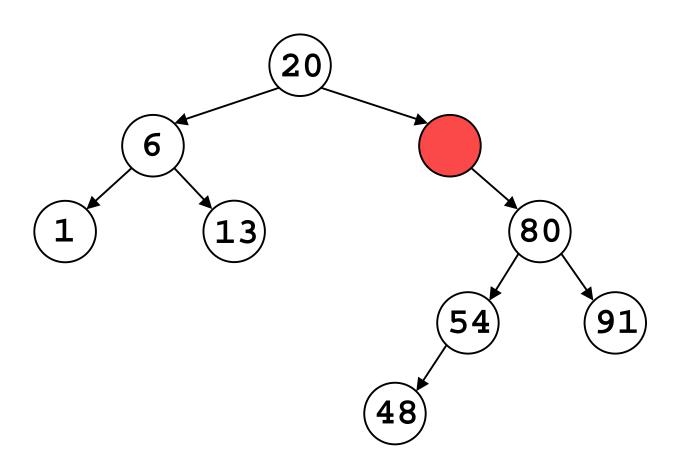


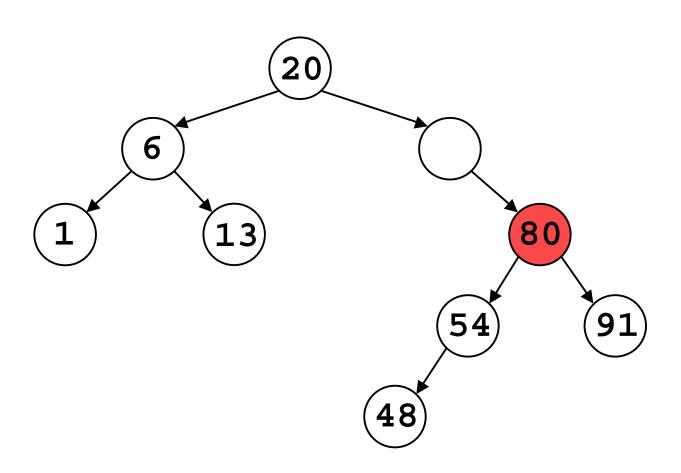


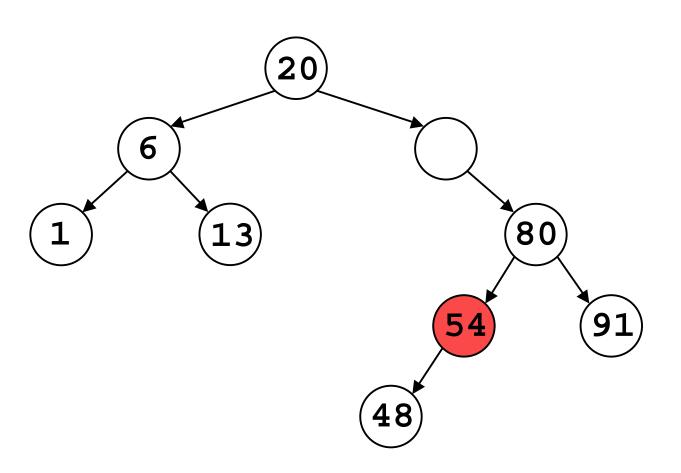


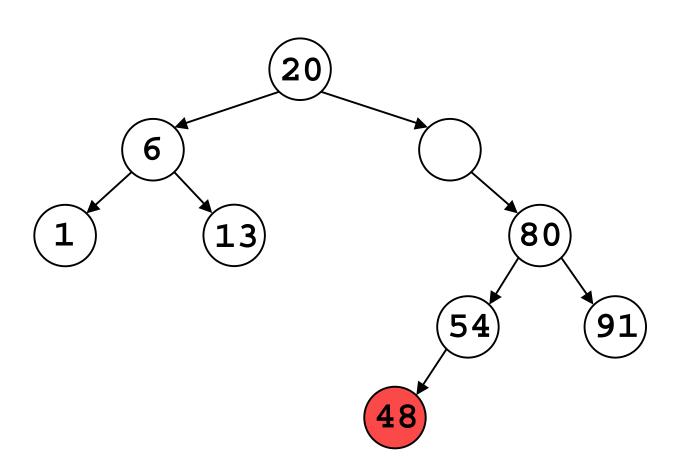


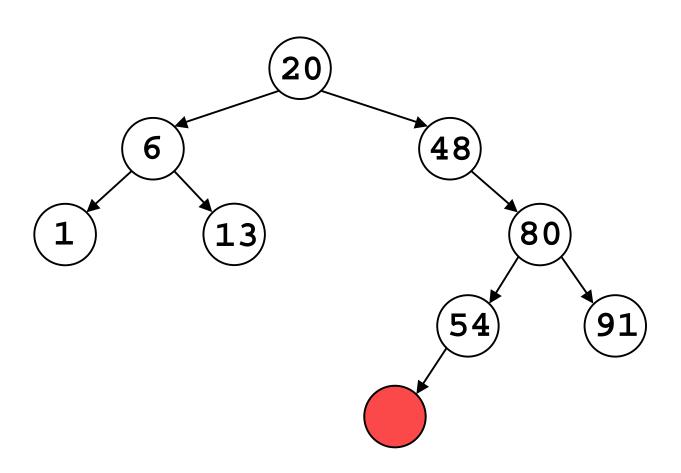


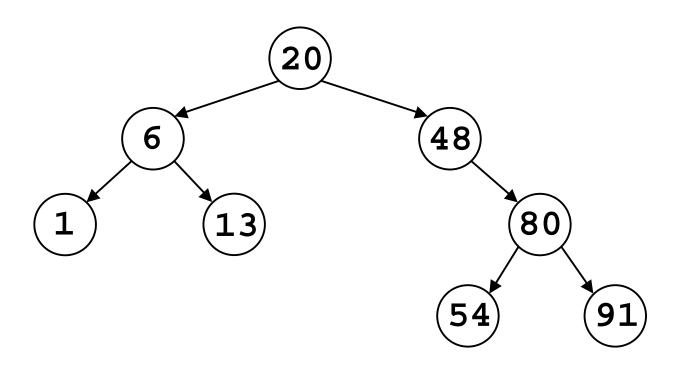






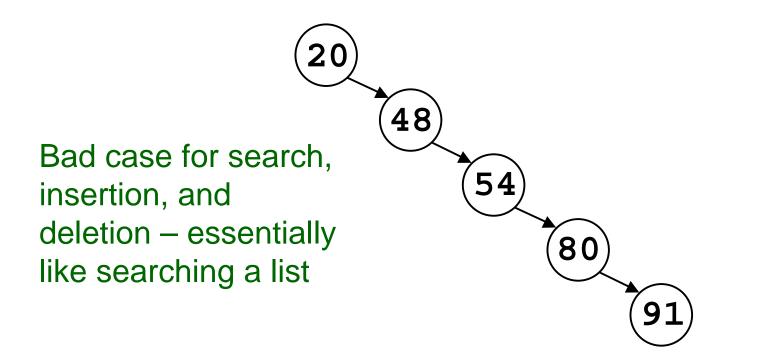






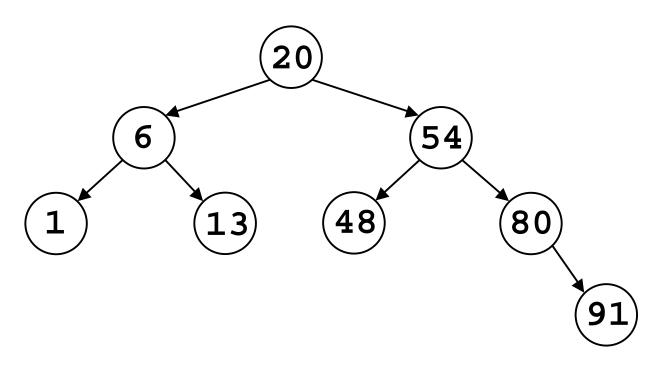
Observation

- These operations take time proportional to the height of the tree (length of the longest path)
- O(n) if tree is not sufficiently balanced



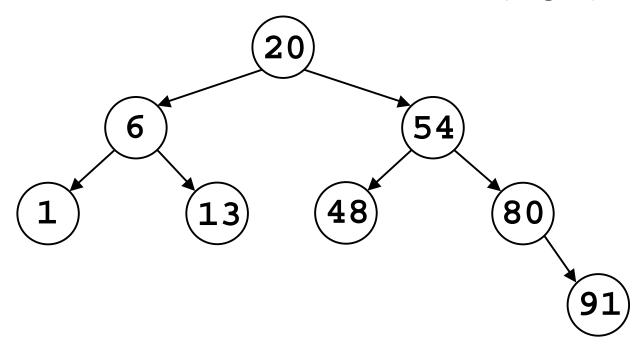
Solution

Try to keep the tree *balanced* (all paths roughly the same length)



Balanced Trees

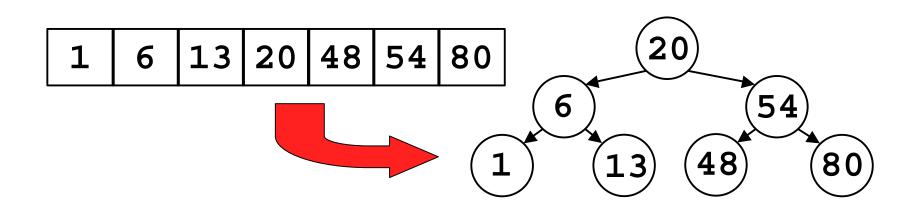
- Size is exponential in height
- Height = $log_2(size)$
- Search, insert, delete will be O(log n)



Creating a Balanced Tree

Creating one from a sorted array:

- Find the median, place that at the root
- Recursively form the left subtree from the left half of the array and the right subtree from the right half of the array



Keeping the Tree Balanced

- Insertions and deletions can put tree out of balance – we may have to rebalance it
- Can we do this efficiently?

AVL Trees

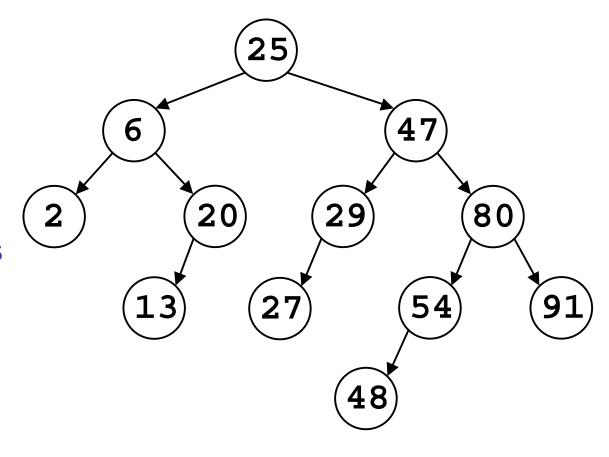
Adelson-Velsky and Landis, 1962

AVL Invariant:

The difference in height between the left and right subtrees of any node is never more than one

An AVL Tree

- Nonexistent children are considered to have height -1
- Note that paths can differ in length by more than 1 (e.g., paths to 2, 48)



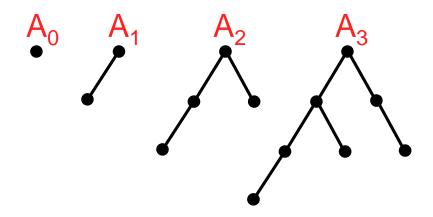
The AVL invariant implies that:

- Size is at least exponential in height
 - $n \ge \phi^d$, where $\phi = (1 + \ddot{0}5)/2 \sim 1.618$, the golden ratio!
- Height is at most logarithmic in size
 - $d \le \log n / \log \varphi \sim 1.44 \log n$

AVL Invariant:

The difference in height between the left and right subtrees of any node is never more than one

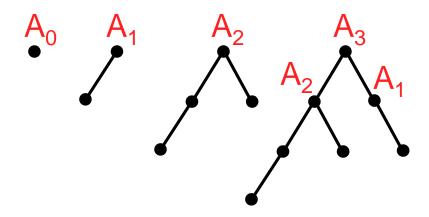
To see that $n \ge \phi^d$, look at the *smallest* possible AVL trees of each height



AVL Invariant:

The difference in height between the left and right subtrees of any node is never more than one

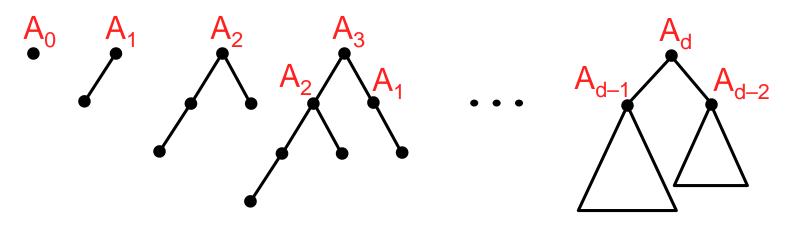
To see that $n \ge \phi^d$, look at the *smallest* possible AVL trees of each height



AVL Invariant:

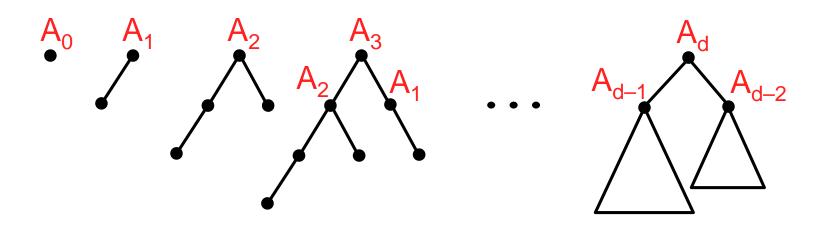
The difference in height between the left and right subtrees of any node is never more than one

To see that $n \ge \phi^d$, look at the *smallest* possible AVL trees of each height



$$A_0 = 1$$

 $A_1 = 2$
 $A_d = A_{d-1} + A_{d-2} + 1$, $d \ge 2$



```
A_0 = 1
A_1 = 2
A_d = A_{d-1} + A_{d-2} + 1, d \ge 2

1 2 4 7 12 20 33 54 88 ...
```

```
A_0 = 1
A_1 = 2
A_d = A_{d-1} + A_{d-2} + 1, d \ge 2
1 2 4 7 12 20 33 54 88 ...
1 1 2 3 5 8 13 21 34 55 ...
The Fibonacci sequence
```

$$A_0 = 1$$
 $A_1 = 2$
 $A_d = A_{d-1} + A_{d-2} + 1$, $d \ge 2$

1 2 4 7 12 20 33 54 88 ...

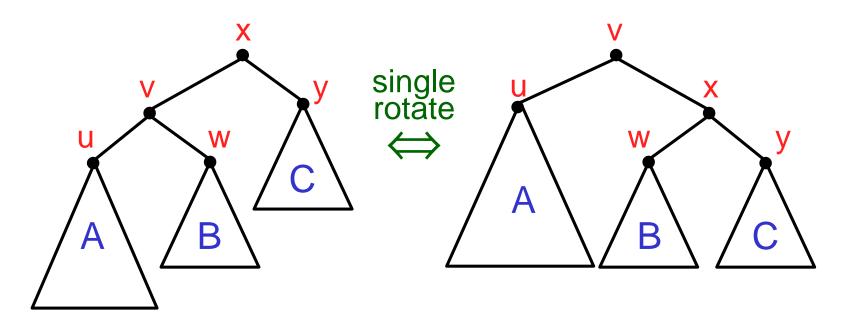
1 1 2 3 5 8 13 21 34 55 ...

 $A_d = F_{d+2} - 1 = O(\phi^d)$

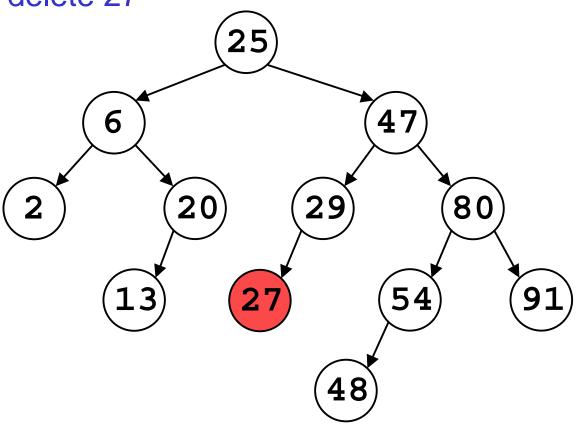
- Insertion and deletion can invalidate the AVL invariant.
- We may have to rebalance.
- How do we know when to rebalance?
 We need to store height information.

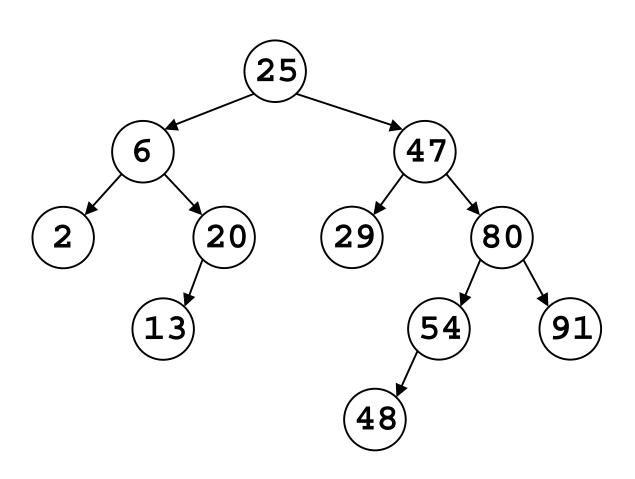
Rotation

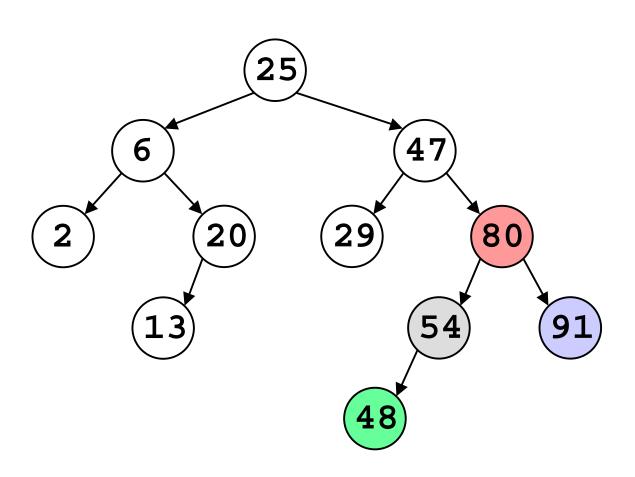
- A local rebalancing operation
- Preserves inorder ordering of the elements
- The AVL invariant can be reestablished with at most O(log n) rotations up and down the tree

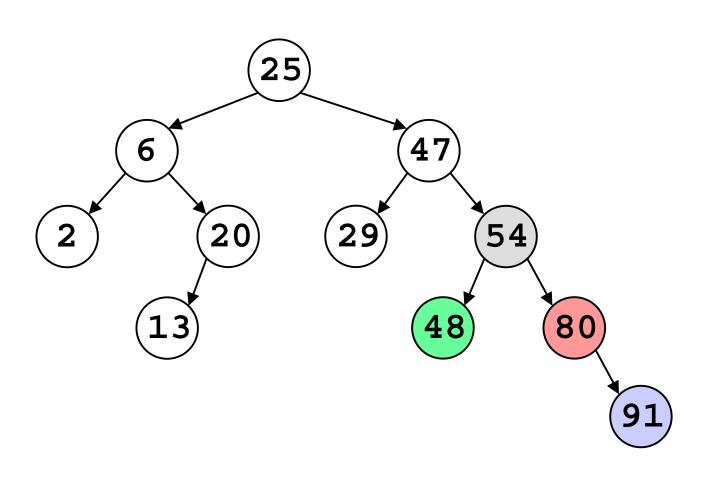


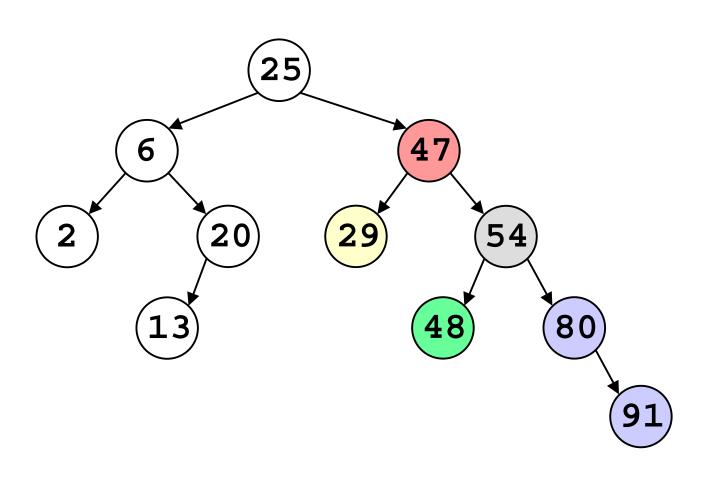
Example: delete 27

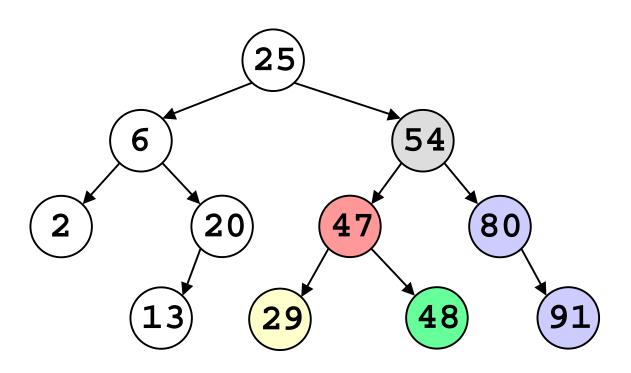




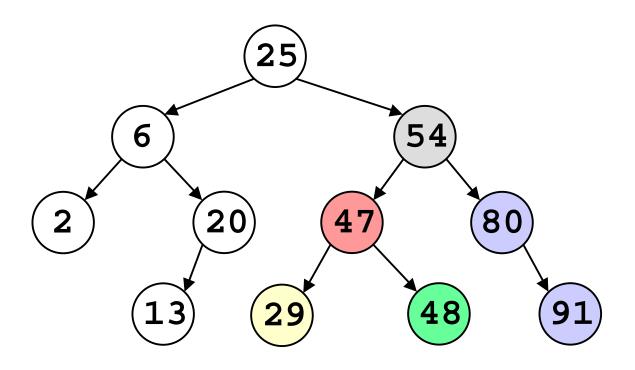








Rebalancing



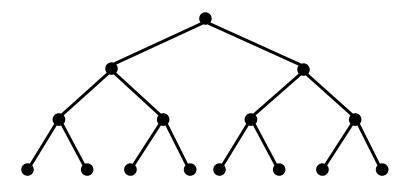
This was a double rotation! See the text for details on rotations.

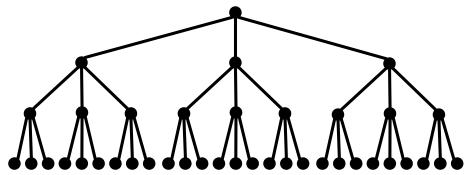
2-3 Trees

Another balanced tree scheme

- Data stored only at the leaves
- Ordered left-to-right
- All paths of the same length
- Every non-leaf has either 2 or 3 children
- Each internal node has smallest, largest element in its subtree (for searching)

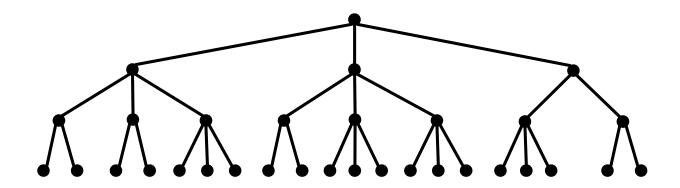
2-3 Trees

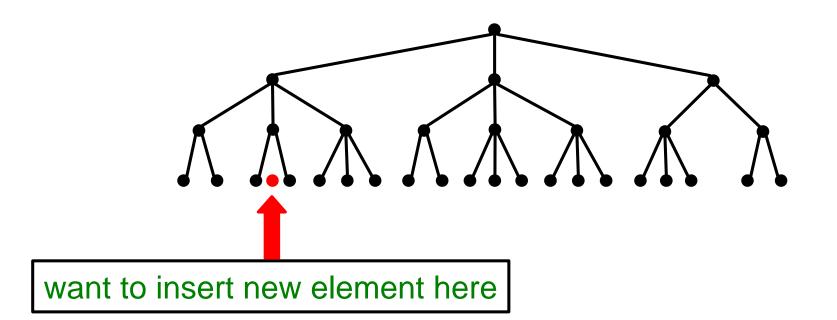


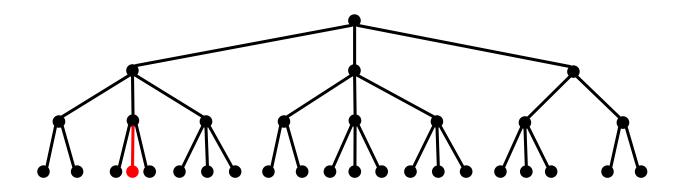


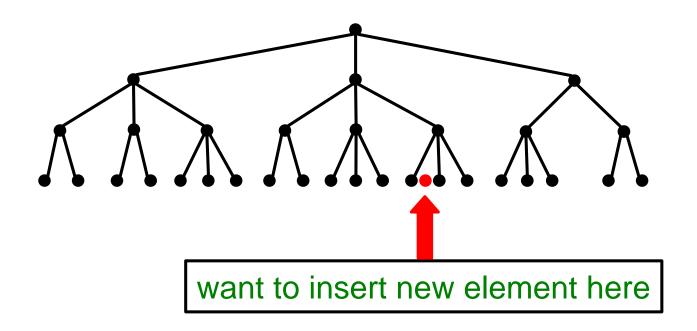
largest 2-3 tree of height d = 3 $3^d = 27$ data elements

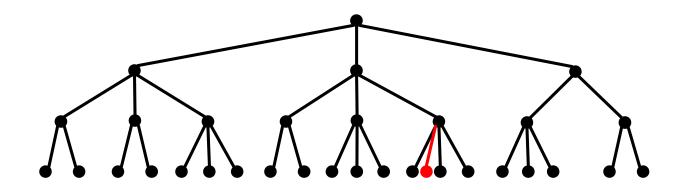
- number of elements satisfies 2^d ≤ n ≤ 3^d
- height satisfies d ≤ log n

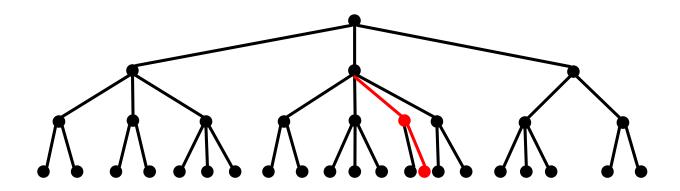


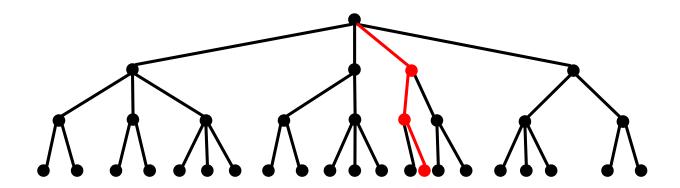


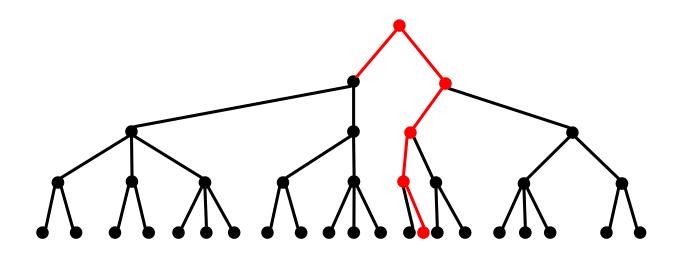


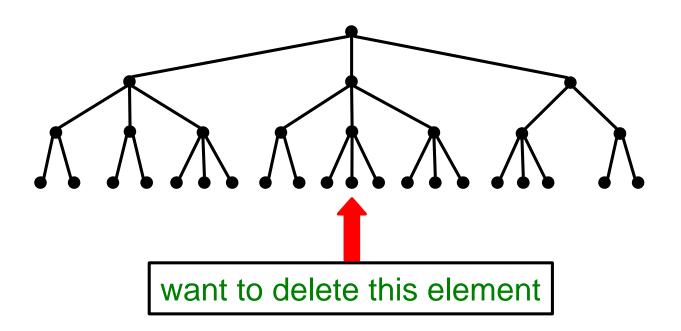


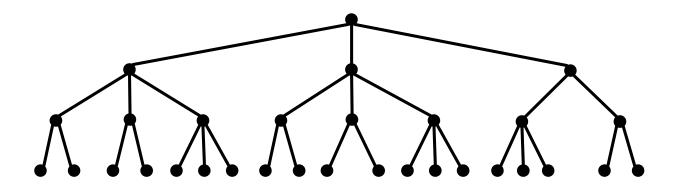


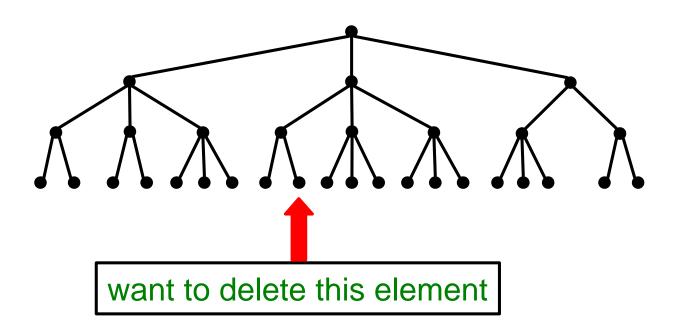


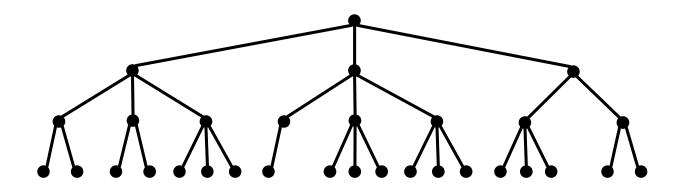




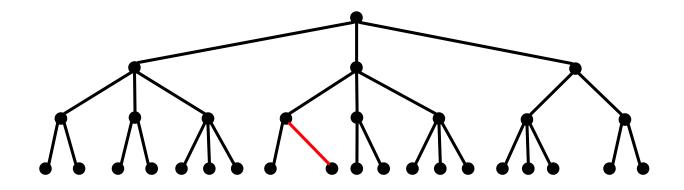




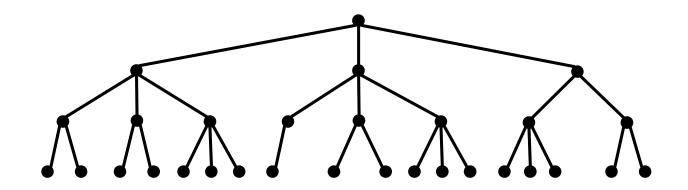




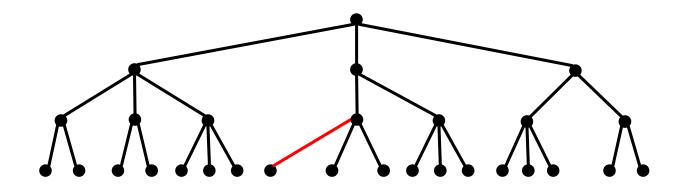
If neighbor has 3 children, borrow one



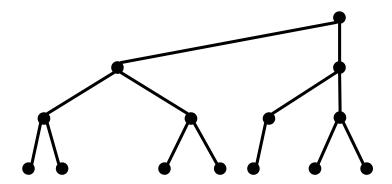
If neighbor has 3 children, borrow one

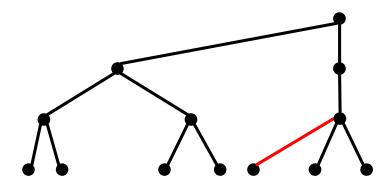


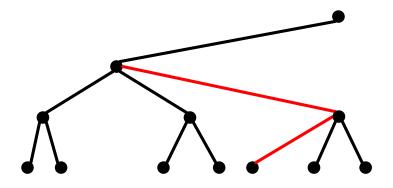
If neighbor has 2 children, coalesce with neighbor

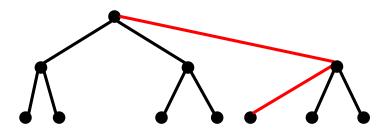


If neighbor has 2 children, coalesce with neighbor









Conclusion

Balanced search trees are good

- Search, insert, delete in O(log n) time
- No need to know size in advance
- Several different versions
 - AVL trees, 2-3 trees, red-black trees, skip lists, random treaps, Huffman trees, ...
 - find out more about them in CS482